清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Characterization Methodologies for Additive Manufacturing

表征(材料科学) 计算机科学 纳米技术 材料科学
作者
Koduru Venkatesh,A. Muthuchamy,V. Karthik
标识
DOI:10.1002/9781394198085.ch4
摘要

Chapter 4 Characterization Methodologies for Additive Manufacturing From Feedstock to the Final Component Koduru Venkatesh, Koduru Venkatesh Department of Metallurgical and Materials Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu, IndiaSearch for more papers by this authorA. Muthuchamy, A. Muthuchamy Department of Metallurgical and Materials Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu, IndiaSearch for more papers by this authorV. Karthik, V. Karthik Department of Metallurgical and Materials Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu, IndiaSearch for more papers by this author Koduru Venkatesh, Koduru Venkatesh Department of Metallurgical and Materials Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu, IndiaSearch for more papers by this authorA. Muthuchamy, A. Muthuchamy Department of Metallurgical and Materials Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu, IndiaSearch for more papers by this authorV. Karthik, V. Karthik Department of Metallurgical and Materials Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu, IndiaSearch for more papers by this author Book Editor(s):R. Rajasekar, R. Rajasekar Department of Mechanical Engineering, Kongu Engineering College, Tamil Nadu, IndiaSearch for more papers by this authorC. Moganapriya, C. Moganapriya Department of Mining Engineering, Indian Institute of Technology, Kharagpur, West Bengal, IndiaSearch for more papers by this authorP. Sathish Kumar, P. Sathish Kumar The Sirindhorn Thai-German Graduate School of Engineering, King Mongkut's University of Technology, Bangkok, ThailandSearch for more papers by this author First published: 16 February 2024 https://doi.org/10.1002/9781394198085.ch4 AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary Additive manufacturing (AM) processes provide new possibilities in the fabrication of complex structures with reduced material costs and defects, and they may become the primary manufacturing route in the near future. It has been reported that the quality of feedstock used in AM influences the quality of the manufactured parts. Therefore, knowing the quality of feedstock and fabricated part helps us understand the optimum conditions required for AM techniques. This chapter's primary goal is to group together all the characterization methods used in AM processes, from the feedstock materials to finished components. The methods used to characterize the feedstock materials and additively manufactured parts are explained in detail in different sections in this chapter. References Standard terminology of powder metallurgy , ASTM B243-22. Google Scholar Standard test method for apparent density of free-flowing metal powders using the hall flowmeter funnel , ASTM B212-21. Google Scholar Zhai , W. , Zhou , W. , Nai , S.M.L. , Wei , J. , Characterization of nanoparticle mixed 316 L powder for additive manufacturing . J. Mater. Sci. Technol. , 47 , 162 – 168 , 2020 . 10.1016/j.jmst.2020.02.019 CASGoogle Scholar Nguyen , Q.B. , Nai , M.L.S. , Zhu , Z. , Sun , C.N. , Wei , J. , Zhou , W. , Characteristics of inconel powders for powder-bed additive manufacturing . Engineering , 3 , 5 , 695 – 700 , 2017 . 10.1016/J.ENG.2017.05.012 CASGoogle Scholar Standard test method for apparent density of non-free-flowing metal powders using the carney funnel , ASTM B412-22. Google Scholar Mitterlehner , M. et al ., Comparative evaluation of characterization methods for powders used in additive manufacturing . J. Mater. Eng. Perform. , 30 , 9 , 7019 – 7034 , 2021 . 10.1007/s11665-021-06113-4 CASGoogle Scholar Standard test method for tap density of metal powders and compounds , ASTM B329-20. Google Scholar Baesso , I. , Karl , D. , Spitzer , A. , Gurlo , A. , Günster , J. , Zocca , A. , Characterization of powder flow behavior for additive manufacturing . Addit. Manuf. , 47 , August, 102250 , 2021 . 10.1016/j.addma.2021.102250 Web of Science®Google Scholar Standard test method for apparent density of powders using arnold meter , ASTM B703-21. Google Scholar Altug-Peduk , G.S. , Dilibal , S. , Harrysson , O. , Ozbek , S. , West , H. , Characterization of Ni–Ti Alloy powders for use in additive manufacturing . Russ. J. Non-Ferrous Met. , 59 , 4 , 433 – 439 , 2018 . 10.3103/S106782121804003X Google Scholar Standard test method for tap density of metal powders and compounds , ASTM B527-23. Google Scholar Young , B. , Heelan , J. , Langan , S. , Siopis , M. , Walde , C. , Birt , A. , Novel characterization techniques for additive manufacturing powder feedstock . Metals (Basel) , 11 , 5 , 1 – 19 , 2021 . 10.3390/met11050720 Google Scholar Du , W. , Singh , M. , Singh , D. , Binder jetting additive manufacturing of silicon carbide ceramics development of bimodal powder feedstocks by modeling and experimental methods . Ceram. Int. , 46 , 12 , 19701 – 19707 , 2020 . 10.1016/j.ceramint.2020.04.098 CASWeb of Science®Google Scholar Standard test method for metal powder skeletal density by helium or nitrogen , ASTM B923-22. Google Scholar Slotwinski , J.A. , Garboczi , E.J. , Stutzman , P.E. , Ferraris , C.F. , Watsonm , S.S. , Peltz , M.A. , Characterization of metal powders used for additve manufacturing . J. Res. Natl. Inst. Stand. Technol. , 119 , 460 – 493 , 2014 . 10.6028/jres.119.018 CASPubMedWeb of Science®Google Scholar Standard test methods for flow rate of metal powders using the hall flowmeter , ASTM B213-20. Google Scholar Snow , Z. , Martukanitz , R. , Joshi , S. , On the development of powder spreadability metrics and feedstock requirements for powder bed fusion additive manufacturing . Addit. Manuf. , 28 , November 2018 , 78 – 86 , 2019. Google Scholar Cordova , L. , Sithole , C. , Macía Rodríguez , E. , Gibson , I. , Campos , M. , Impact of powder reusability on batch repeatability of Ti6Al4V ELI for PBF-LB industrial production . Powder Metall. , 66 , 2 , 129 – 138 , 2022 . 10.1080/00325899.2022.2133357 Google Scholar Lim , J.H. and Khan , N.A. , Effects of particle size distribution on the surface finish of selective laser melting parts . Solid Free. Fabr. 2019 Proc. 30th Annu. Int. Solid Free. Fabr. Symp. - An Addit. Manuf. Conf. SFF 2019 , pp. 1990 – 2003 , 2019 . Google Scholar Standard test methods for flow rate of metal powders using the carney funnel , ASTM B964-23. Google Scholar Condruz , M.R. , Matache , G. , Paraschiv , A. , Characterization of in 625 recycled metal powder used for selective laser melting . Manuf. Rev. , 7 , 1 – 8 , 2020 . Google Scholar Standard test method for volumetric flow rate of metal powders using the arnold meter and hall flowmeter funnel , ASTM B855-22. Google Scholar Standard test method for sieve analysis of metal powders , ASTM B214-22. Google Scholar Mordas , G. et al ., Characterisation of CoCrMo powder for additive manufacturing . Int. J. Adv. Manuf. Technol. , 111 , 11–12 , 3083 – 3093 , 2020 . 10.1007/s00170-020-06236-3 Google Scholar Standard test method for particle size distribution of metal powders and related compounds by light scattering , ASTM B822-20. Google Scholar Standard terminology relating to metallography , ASTM E7-22. Google Scholar Standard test method for compressibility of metal powders in uniaxial compaction , ASTM B331-20. Google Scholar Standard test methods for density of compacted or sintered powder metallurgy (PM) products using archimedes’ principle , ASTM B962-17. Google Scholar Gong , H. , Rafi , K. , Gu , H. , Janaki Ram , G.D. , Starr , T. , Stucker , B. , Influence of defects on mechanical properties of Ti-6Al-4V components produced by selective laser melting and electron beam melting . Mater. Des. , 86 , 545 – 554 , 2015 . 10.1016/j.matdes.2015.07.147 CASWeb of Science®Google Scholar Standard test methods for tension testing of metallic materials , ASTM E8/E8M-22. Google Scholar Edwards , P. , O'Conner , A. , Ramulu , M. , Electron beam additive manufacturing of titanium components Properties and performance . J. Manuf. Sci. Eng. , 135 , 6 , 1 – 8 , 2013 . 10.1115/1.4025773 Google Scholar Carroll , B.E. , Palmer , T.A. , Beese , A.M. , Anisotropic tensile behavior of Ti-6Al-4V components fabricated with directed energy deposition additive manufacturing . Acta Mater. , 87 , 309 – 320 , 2015 . 10.1016/j.actamat.2014.12.054 CASWeb of Science®Google Scholar Standard test methods for vickers hardness and knoop hardness of metallic materials , ASTM E92-17. Google Scholar Zhu , Y. , Li , J. , Tian , X. , Wang , H. , Liu , D. , Microstructure and mechanical properties of hybrid fabricated Ti-6.5Al-3.5Mo-1.5Zr-0.3Si titanium alloy by laser additive manufacturing . Mater. Sci. Eng. A , 607 , 427 – 434 , 2014 . 10.1016/j.msea.2014.04.019 CASWeb of Science®Google Scholar Gu , D. , Rao , X. , Dai , D. , Ma , C. , Xi , L. , Lin , K. , Laser additive manufacturing of carbon nanotubes (CNTs) reinforced aluminum matrix nanocomposites Processing optimization, microstructure evolution and mechanical properties . Addit. Manuf. , 29 , July, 100801, 2019. Google Scholar Standard test method for brinell hardness of metallic materials , ASTM E10-18. Google Scholar Standard test methods for rockwell hardness of metallic materials , ASTM E18-22. Google Scholar Standard test methods for notched bar impact testing of metallic materials , ASTM E 23-18. Google Scholar Hack , H. , Link , R. , Knudsen , E. , Baker , B. , Olig , S. , Mechanical properties of additive manufactured nickel alloy 625 . Addit. Manuf. , 14 , 105 – 115 , 2017 . CASWeb of Science®Google Scholar Shassere , B. , Nycz , A. , Noakes , M.W. , Masuo , C. , Sridharan , N. , Correlation of microstructure and mechanical properties of metal big area additive manufacturing . Appl. Sci. , 9 , 787 , 2019 . 10.3390/app9040787 CASGoogle Scholar Standard terminology relating to fatigue and fracture testing , ASTM E1823-21. Google Scholar Standard test method for plane-strain fracture toughness of metallic materials ASTM E399-22. Google Scholar Davis , A.E. et al ., Mechanical performance and microstructural characterisation of titanium alloy-alloy composites built by wire-arc additive manufacture . Mater. Sci. Eng. A , 765 , July, 138289 , 2019 . 10.1016/j.msea.2019.138289 CASGoogle Scholar Standard practice for conducting force controlled constant amplitude axial fatigue tests of metallic materials , ASTM E466-21. Google Scholar Chang , K. et al ., Microstructural feature and mechanical property in different building directions of additive manufactured Ti6Al4V alloy . Mater. Lett. , 267 , 127516 , 2020 . 10.1016/j.matlet.2020.127516 CASWeb of Science®Google Scholar Standard test method for wear testing with a pin-on-disk standard test method for wear testing with a pin-on-disk apparatus , ASTM G99-17. Google Scholar Attar , H. et al ., Nanoindentation and wear properties of Ti and Ti-TiB composite materials produced by selective laser melting . Mater. Sci. Eng. A , 688 , December 2016 , 20 – 26 , 2017. 10.1016/j.msea.2017.01.096 Google Scholar Standard test method for conducting potentiodynamic polarization resistance measurements , ASTM G59-97. Google Scholar Yang , K. , Wang , Q. , Qu , Y. , Jiang , Y. , Bao , Y. , Microstructure and corrosion resistance of arc additive manufactured 316L stainless steel . J. Wuhan Univ. Technol. Mater. Sci. Ed. , 35 , 5 , 930 – 936 , 2020 . 10.1007/s11595-020-2339-9 CASGoogle Scholar Niu , P.D. et al ., Microstructures and properties of an equimolar AlCoCrFeNi high entropy alloy printed by selective laser melting . Intermetallics , 104 , July 2018 , 24 – 32 , 2019. 10.1016/j.intermet.2018.10.018 Google Scholar Gordon , J.V. , Haden , C.V. , Nied , H.F. , Vinci , R.P. , Harlow , D.G. , Fatigue crack growth anisotropy, texture and residual stress in austenitic steel made by wire and arc additive manufacturing . Mater. Sci. Eng. A , 724 , December 2017 , 431 – 438 , 2018. 10.1016/j.msea.2018.03.075 Google Scholar Simonelli , M. , Tse , Y.Y. , Tuck , C. , Effect of the build orientation on the mechanical properties and fracture modes of SLM Ti-6Al-4V . Mater. Sci. Eng. A , 616 , 1 – 11 , 2014 . 10.1016/j.msea.2014.07.086 CASWeb of Science®Google Scholar Agrawal , P. et al ., Processing-structure-property correlation in additive friction stir deposited Ti-6Al-4V alloy from recycled metal chips . Addit. Manuf. , 47 , July, 102259 , 2021 . CASGoogle Scholar Yao , H. et al ., High strength and ductility AlCrFeNiV high entropy alloy with hierarchically heterogeneous microstructure prepared by selective laser melting . J. Alloys Compd. , 813 , 152196 , 2020 . 10.1016/j.jallcom.2019.152196 CASWeb of Science®Google Scholar Kreitcberg , A. , Brailovski , V. , Turenne , S. , Effect of heat treatment and hot isostatic pressing on the microstructure and mechanical properties of Inconel 625 alloy processed by laser powder bed fusion . Mater. Sci. Eng. A , 689 , 1 – 10 , 2017 . 10.1016/j.msea.2017.02.038 CASWeb of Science®Google Scholar McLouth , T.D. et al ., Variations in ambient and elevated temperature mechanical behavior of IN718 manufactured by selective laser melting via process parameter control . Mater. Sci. Eng. A , 780 , March, 139184 , 2020 . 10.1016/j.msea.2020.139184 CASWeb of Science®Google Scholar Stoudt , M.R. et al ., Location-specific microstructure characterization within IN625 additive manufacturing benchmark test artifacts . Integr. Mater. Manuf. Innov. , 9 , 1 , 54 – 69 , 2020 . 10.1007/s40192-020-00172-6 Google Scholar Nguejio , J. , Szmytka , F. , Hallais , S. , Tanguy , A. , Nardone , S. , Godino Martinez , M. , Comparison of microstructure features and mechanical properties for additive manufactured and wrought nickel alloys 625 . Mater. Sci. Eng. A , 764 , July, 138214, 2019 . 10.1016/j.msea.2019.138214 Google Scholar Ren , L. et al ., Effects of interpass cooling on material properties of wire arc additive manufactured Al-6.3Mg alloy . 3D Print. Addit. Manuf. , 6 , 6 , 344 – 353 , 2019 . 10.1089/3dp.2019.0061 Google Scholar Gangireddy , S. , Gwalani , B. , Liu , K. , Faierson , E.J. , Mishra , R.S. , Microstructure and mechanical behavior of an additive manufactured (AM) WE43-Mg alloy . Addit. Manuf. , 26 , September 2018 , 53 – 64 , 2019. Google Scholar Zhang , X. et al ., Study on microstructure and tensile properties of high nitrogen Cr-Mn steel processed by CMT wire and arc additive manufacturing . Mater. Des. , 166 , 107611 , 2019 . 10.1016/j.matdes.2019.107611 CASWeb of Science®Google Scholar Sridharan , N. , Wolcott , P. , Dapino , M. , Babu , S.S. , Microstructure and mechanical property characterisation of aluminium–steel joints fabricated using ultrasonic additive manufacturing . Sci. Technol. Weld. Join. , 22 , 5 , 373 – 380 , 2017 . 10.1080/13621718.2016.1249644 CASGoogle Scholar Li , D. , Shen , X. , Yang , H. , Liu , Z.X. , Zhao , L. , Wang , H. , Quantitative distribution characterization of gradient composition of additive-manufactured stainless steel using micro-beam X-ray fluorescence . Spectrochim. Acta - Part B At. Spectrosc. , 183 , July, 106268 , 2021 . 10.1016/j.sab.2021.106268 CASGoogle Scholar Chen , Z. , Wu , X. , Tomus , D. , Davies , C.H.J. , Surface roughness of selective laser melted Ti-6Al-4V alloy components . Addit. Manuf. , 21 , July 2017 , 91 – 103 , 2018. Google Scholar Nakatani , M. , Masuo , H. , Tanaka , Y. , Murakami , Y. , Effect of surface roughness on fatigue strength of Ti-6Al-4V alloy manufactured by additive manufacturing . Proc. Struct. Integr. , 19 , 294 – 301 , 2019 . 10.1016/j.prostr.2019.12.032 Google Scholar Additive Manufacturing with Novel Materials: Processes, Properties and Applications ReferencesRelatedInformation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xgx984完成签到,获得积分10
1秒前
139完成签到 ,获得积分10
4秒前
小鱼女侠完成签到 ,获得积分10
9秒前
zzr完成签到 ,获得积分10
21秒前
hope33完成签到,获得积分10
22秒前
聪慧的凝海完成签到 ,获得积分10
24秒前
呜呜呜完成签到 ,获得积分10
29秒前
赘婿应助zzydada采纳,获得10
34秒前
荔枝小妹完成签到 ,获得积分10
36秒前
我有我风格完成签到 ,获得积分10
39秒前
song完成签到 ,获得积分10
40秒前
琦qi完成签到 ,获得积分10
54秒前
LiChard完成签到 ,获得积分10
1分钟前
betty完成签到 ,获得积分10
1分钟前
个十百千萬完成签到 ,获得积分10
1分钟前
墨染应助tx采纳,获得30
1分钟前
奎奎完成签到 ,获得积分10
1分钟前
wang5945完成签到 ,获得积分10
1分钟前
刺眼的疼完成签到 ,获得积分10
1分钟前
落苏潮海完成签到 ,获得积分10
2分钟前
yaya完成签到 ,获得积分20
2分钟前
trial完成签到 ,获得积分10
2分钟前
tx完成签到,获得积分20
2分钟前
bkagyin应助科研通管家采纳,获得10
2分钟前
友好冷之应助科研通管家采纳,获得30
2分钟前
脑洞疼应助dxtmm采纳,获得10
2分钟前
xix完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
魏白晴完成签到,获得积分10
3分钟前
xzn1123完成签到 ,获得积分0
3分钟前
喜悦香萱完成签到 ,获得积分10
3分钟前
mrwang完成签到 ,获得积分10
3分钟前
阿狸完成签到 ,获得积分0
3分钟前
happy完成签到 ,获得积分10
3分钟前
dxtmm发布了新的文献求助10
4分钟前
wj完成签到 ,获得积分10
4分钟前
scarlet完成签到 ,获得积分10
4分钟前
干净山彤完成签到 ,获得积分10
4分钟前
北笙完成签到 ,获得积分10
4分钟前
高分求助中
Teaching Social and Emotional Learning in Physical Education 900
Gymnastik für die Jugend 600
Chinese-English Translation Lexicon Version 3.0 500
Electronic Structure Calculations and Structure-Property Relationships on Aromatic Nitro Compounds 500
マンネンタケ科植物由来メロテルペノイド類の網羅的全合成/Collective Synthesis of Meroterpenoids Derived from Ganoderma Family 500
[Lambert-Eaton syndrome without calcium channel autoantibodies] 440
Plesiosaur extinction cycles; events that mark the beginning, middle and end of the Cretaceous 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2384446
求助须知:如何正确求助?哪些是违规求助? 2091317
关于积分的说明 5257975
捐赠科研通 1818215
什么是DOI,文献DOI怎么找? 906953
版权声明 559082
科研通“疑难数据库(出版商)”最低求助积分说明 484280