MechAgents: Large language model multi-agent collaborations can solve mechanics problems, generate new data, and integrate knowledge

计算机科学 人工智能 大数据 物理定律 理论计算机科学 数据科学 数据挖掘 认识论 哲学
作者
Bo Ni,Markus J. Buehler
出处
期刊:Extreme Mechanics Letters [Elsevier BV]
卷期号:67: 102131-102131 被引量:21
标识
DOI:10.1016/j.eml.2024.102131
摘要

Solving mechanics problems using numerical methods requires comprehensive intelligent capability of retrieving relevant knowledge and theory, constructing and executing codes, analyzing the results, a task that has thus far mainly been reserved for humans. While emerging AI methods can provide effective approaches to solve end-to-end problems, for instance via the use of deep surrogate models or various data analytics strategies, they often lack physical intuition since knowledge is baked into the parametric complement through training, offering less flexibility when it comes to incorporating mathematical or physical insights. By leveraging diverse capabilities of multiple dynamically interacting large language models (LLMs), we can overcome the limitations of conventional approaches and develop a new class of physics-inspired generative machine learning platform, here referred to as MechAgents. A set of AI agents can solve mechanics tasks, here demonstrated for elasticity problems, via autonomous collaborations. A two-agent team can effectively write, execute and self-correct code, in order to apply finite element methods to solve classical elasticity problems in various flavors (different boundary conditions, domain geometries, meshes, small/finite deformation and linear/hyper-elastic constitutive laws, and others). For more complex tasks, we construct a larger group of agents with enhanced division of labor among planning, formulating, coding, executing and criticizing the process and results. The agents mutually correct each other to improve the overall team-work performance in understanding, formulating and validating the solution. Our framework shows the potential of synergizing the intelligence of language models, the reliability of physics-based modeling, and the dynamic collaborations among diverse agents, opening novel avenues for automation of solving engineering problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
s1lence发布了新的文献求助10
刚刚
卡卡西应助WYP采纳,获得10
1秒前
song完成签到,获得积分10
1秒前
2秒前
3秒前
6秒前
WYP完成签到,获得积分10
7秒前
9秒前
务实的罡发布了新的文献求助10
10秒前
12秒前
xiaoliu完成签到,获得积分20
14秒前
16秒前
脈打发布了新的文献求助10
16秒前
孝顺的友菱完成签到,获得积分10
18秒前
SciGPT应助jackie采纳,获得10
19秒前
19秒前
21秒前
hyman1218完成签到 ,获得积分10
21秒前
23秒前
Tsjng关注了科研通微信公众号
23秒前
Hello应助清新的又蓝采纳,获得10
24秒前
26秒前
脈打完成签到,获得积分10
27秒前
直率新柔完成签到 ,获得积分10
28秒前
28秒前
33秒前
Tsjng发布了新的文献求助10
35秒前
38秒前
39秒前
Rita发布了新的文献求助10
39秒前
脑洞疼应助song采纳,获得10
41秒前
阳光的一应助a31采纳,获得10
42秒前
务实的罡完成签到,获得积分10
42秒前
43秒前
从前完成签到,获得积分10
43秒前
美满夏寒完成签到,获得积分10
44秒前
virgil发布了新的文献求助10
45秒前
丘比特应助宋阳采纳,获得10
48秒前
Lucas应助sun采纳,获得10
51秒前
阳光的一应助111采纳,获得10
51秒前
高分求助中
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
Multi-omics analysis reveals the molecular mechanisms and therapeutic targets in high altitude polycythemia 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3899633
求助须知:如何正确求助?哪些是违规求助? 3444222
关于积分的说明 10833811
捐赠科研通 3169095
什么是DOI,文献DOI怎么找? 1750950
邀请新用户注册赠送积分活动 846407
科研通“疑难数据库(出版商)”最低求助积分说明 789179