Species Identification of Birds Via Acoustic Processing Signals Using Recurrent Network Analysis (RNN)

循环神经网络 鉴定(生物学) 计算机科学 语音识别 人工智能 生物 人工神经网络 生态学
作者
C. Srujana,B. Sriya,S Divya,Subhani Shaik,V. Kakulapati
出处
期刊:Lecture notes in networks and systems 卷期号:: 27-38
标识
DOI:10.1007/978-981-99-8451-0_3
摘要

Bird watching is a popular pastime, but without the proper identification guides, it may be difficult to tell different species apart. There are more than 9000 recognized bird species. Some bird species are notoriously difficult to predict when they are first identified. Additionally, seeing beliefs when it comes to communicating with birds as a service to birdwatchers, developed a system that uses RNNS to classify bird species. RNNs are an effective machine learning algorithm suite that has shown great promise in the fields of image and audio processing. In this study, investigate potential methods for bird recognition and create a fully automated method for doing so. Automatically identifying bird calls without human intervention is an arduous task that has necessitated much research into the taxonomy and other areas of ornithology. In this study, ID is assessed from two distinct perspectives. The first thing to do was make a complete database of recorded bird calls. Following that, other techniques were used to the sound samples prior to further processing. These included pre-emphasis, framing, quiet eradication, and rebuilding. Each reconstructed audio specimen was given its spectrogram. A neural network was then constructed, trained, and applied to classify the bird species. The consequences of the proposed methodology exhibit that it has been 80% accurate in predicting the identification of bird species.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王旭东完成签到 ,获得积分10
1秒前
无情的宛儿发布了新的文献求助100
1秒前
沈建文发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
jkw发布了新的文献求助30
3秒前
丘比特应助壮观寒荷采纳,获得10
3秒前
木木发布了新的文献求助10
4秒前
云上人发布了新的文献求助10
5秒前
张光光完成签到,获得积分10
6秒前
Drake完成签到,获得积分10
6秒前
11111发布了新的文献求助10
7秒前
8秒前
结实的老虎完成签到,获得积分10
10秒前
10秒前
淡定诗柳完成签到,获得积分10
13秒前
火星上的若颜完成签到,获得积分10
13秒前
14秒前
CipherSage应助太阳地里1911采纳,获得10
16秒前
隐形曼青应助KK采纳,获得10
16秒前
赘婿应助11111采纳,获得10
17秒前
勤劳怜寒发布了新的文献求助20
18秒前
辛勤的刺猬完成签到 ,获得积分10
19秒前
泡沫发布了新的文献求助10
19秒前
学习的苹果完成签到,获得积分10
19秒前
乐乐应助搞怪小兔子采纳,获得10
20秒前
科研通AI5应助茫茫采纳,获得10
20秒前
田様应助阔达映之采纳,获得10
21秒前
22秒前
勤劳怜寒完成签到,获得积分20
25秒前
25秒前
行踪完成签到 ,获得积分10
25秒前
kingwill应助泡沫采纳,获得20
28秒前
28秒前
打打应助泡沫采纳,获得10
28秒前
28秒前
你怎么睡得着觉完成签到,获得积分10
30秒前
feng1235发布了新的文献求助10
31秒前
31秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
System of systems: When services and products become indistinguishable 300
How to carry out the process of manufacturing servitization: A case study of the red collar group 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3812565
求助须知:如何正确求助?哪些是违规求助? 3357082
关于积分的说明 10385222
捐赠科研通 3074312
什么是DOI,文献DOI怎么找? 1688689
邀请新用户注册赠送积分活动 812320
科研通“疑难数据库(出版商)”最低求助积分说明 766986