聚甲基丙烯酸甲酯
量子点
原位
基质(水族馆)
钙钛矿(结构)
材料科学
纳米技术
猝灭(荧光)
光致发光
喷墨打印
收缩率
化学工程
光电子学
化学
复合材料
聚合物
墨水池
有机化学
光学
工程类
荧光
地质学
海洋学
物理
作者
Yaqian Zheng,Yanyu Duan,Yun Ye,Xingke Zheng,Aochen Du,Enguo Chen,Sheng Xu,Tailiang Guo
摘要
Abstract The preparation of perovskite quantum dots (PQDs) using an in situ inkjet printing method is beneficial for improving the problems of aggregation and photoluminescence (PL) quenching during long‐term storage. However, the stability of PQDs prepared using this method is still not ideal, and the morphology of in situ ‐printed patterns needs to be optimized. To address these problems, this study introduced polymethyl methacrylate (PMMA) into the process of in situ inkjet printing of PQDs and explored the effect of PMMA on the in situ patterning effect of PQDs. The results showed that using a mixed precursor solution containing a small amount of PMMA as the printing ink can slow down the shrinkage process of ink droplets and improve the uniformity of film formation. As the printing substrate, PMMA provided a suitable high‐viscosity environment for the in situ growth of PQDs. This could effectively suppress the coffee ring effect. In addition, the interaction between the C=O=C group in PMMA and metal ion Pb 2+ in the CsPbBr 3 precursor molecules was favourable to enhancing the density of PQDs. The prepared PMMA‐coated CsPbBr 3 quantum dots (QDs) pattern had high stability and could maintain at 90.08% PL intensity after 1 week of exposure to air.
科研通智能强力驱动
Strongly Powered by AbleSci AI