Comparing Artificial Intelligence-Enabled Electrocardiogram Models in Identifying Left Atrium Enlargement and Long-term Cardiovascular Risk

医学 心房颤动 左心房扩大 内科学 心脏病学 窦性心律 心电图 人工智能 机器学习 计算机科学
作者
Chung‐Chuan Chou,Zhi‐Yong Liu,Po‐Cheng Chang,Hao-Tien Liu,Hung-Ta Wo,Wen-Chen Lee,Chun‐Chieh Wang,Jung‐Sheng Chen,Chang‐Fu Kuo,Ming‐Shien Wen
出处
期刊:Canadian Journal of Cardiology [Elsevier BV]
卷期号:40 (4): 585-594 被引量:1
标识
DOI:10.1016/j.cjca.2023.12.025
摘要

Abstract

Background

The role of P wave in identifying left atrial enlargement (LAE) using artificial intelligence (AI)-enabled electrocardiogram (ECG) models is unclear. It is also unknown if AI-enabled single-lead ECGs could be used as a diagnostic tool for LAE surveillance. We aimed to build AI-enabled P-wave and single-lead ECG models to identify LAE using sinus rhythm (SR) and/or non-SR ECGs, and compared the prognostic ability of severe LAE as left atrial diameter (LAD) ≥50 mm assessed by AI-enabled ECG models and echocardiography.

Methods

This retrospective study used data from 382,594 consecutive adults with paired 12-lead ECG and echocardiograms measured within 2 weeks at Chang Gung Memorial Hospital. UNet++ was used for P-wave segmentation. ResNet-18 was used to develop deep convolutional neural network-enabled ECG models for discriminating LAE. External validation was performed using data from 11,753 patients from another hospital.

Results

The AI-enabled 12-lead ECG model outperformed other ECG models for classifying LAE, but the single-lead ECG models also showed excellent performance at an LAD cut-off 50 mm. AI-enabled ECG models had excellent and fair discrimination on LAE using the SR and the non-SR dataset, respectively. Severe LAE identified by AI-enabled ECG models was more predictive of future cardiovascular disease than echocardiography; however, the cumulative incidence of new-onset atrial fibrillation and heart failure was higher in patients with echocardiography-severe LAE than AI-enabled ECG-severe LAE.

Conclusions

P wave plays a crucial role in discriminating LAE in AI-enabled ECG models. AI-enabled ECG models outperform echocardiography in predicting new-onset cardiovascular diseases associated with severe LAE.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Be-a rogue发布了新的文献求助10
1秒前
orixero应助zbb采纳,获得10
1秒前
清脆的丹南完成签到,获得积分20
1秒前
2秒前
长孙一手完成签到 ,获得积分10
2秒前
卤味姐姐完成签到,获得积分10
3秒前
王世卉发布了新的文献求助10
3秒前
饿了就次爪爪完成签到 ,获得积分10
4秒前
思源应助酒吧舞男茜茜妈采纳,获得30
4秒前
无辜夏旋发布了新的文献求助200
4秒前
CipherSage应助hhhhhhan616采纳,获得10
5秒前
pawpaw009发布了新的文献求助200
5秒前
lizhiqian2024发布了新的文献求助10
5秒前
不再挨训完成签到 ,获得积分10
9秒前
11秒前
秀丽高跟鞋完成签到,获得积分10
11秒前
13秒前
hellozijia完成签到,获得积分10
14秒前
15秒前
16秒前
17秒前
wewewew发布了新的文献求助10
17秒前
花花完成签到,获得积分10
17秒前
17秒前
陈宇发布了新的文献求助10
19秒前
酷波er应助wewewew采纳,获得30
21秒前
追风发布了新的文献求助10
22秒前
桐桐应助ycliang采纳,获得10
22秒前
22秒前
22秒前
cjq完成签到,获得积分0
23秒前
小眼儿完成签到 ,获得积分10
23秒前
lizhiqian2024发布了新的文献求助10
24秒前
25秒前
26秒前
王世卉完成签到,获得积分10
27秒前
段段砖完成签到 ,获得积分10
27秒前
28秒前
爆米花应助行运采纳,获得10
28秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782940
求助须知:如何正确求助?哪些是违规求助? 3328272
关于积分的说明 10235518
捐赠科研通 3043399
什么是DOI,文献DOI怎么找? 1670491
邀请新用户注册赠送积分活动 799731
科研通“疑难数据库(出版商)”最低求助积分说明 759050