Realization of digital twin for dynamic control toward sample variation of ion exchange chromatography in antibody separation

均方误差 稳健性(进化) 实现(概率) 计算机科学 离子色谱法 联营 色谱法 数学 化学 人工智能 统计 生物化学 基因
作者
Ce Shi,Xu‐Jun Chen,Xue‐Zhao Zhong,Yan Yang,Dong‐Qiang Lin,Ran Chen
出处
期刊:Biotechnology and Bioengineering [Wiley]
卷期号:121 (5): 1702-1715 被引量:4
标识
DOI:10.1002/bit.28660
摘要

Abstract Digital twin (DT) is a virtual and digital representation of physical objects or processes. In this paper, this concept is applied to dynamic control of the collection window in the ion exchange chromatography (IEC) toward sample variations. A possible structure of a feedforward model‐based control DT system was proposed. Initially, a precise IEC mechanistic model was established through experiments, model fitting, and validation. The average root mean square error (RMSE) of fitting and validation was 8.1% and 7.4%, respectively. Then a model‐based gradient optimization was performed, resulting in a 70.0% yield with a remarkable 11.2% increase. Subsequently, the DT was established by systematically integrating the model, chromatography system, online high‐performance liquid chromatography, and a server computer. The DT was validated under varying load conditions. The results demonstrated that the DT could offer an accurate control with acidic variants proportion and yield difference of less than 2% compared to the offline analysis. The embedding mechanistic model also showed a positive predictive performance with an average RMSE of 11.7% during the DT test under >10% sample variation. Practical scenario tests indicated that tightening the control target could further enhance the DT robustness, achieving over 98% success rate with an average yield of 72.7%. The results demonstrated that the constructed DT could accurately mimic real‐world situations and perform an automated and flexible pooling in IEC. Additionally, a detailed methodology for applying DT was summarized.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Meidina发布了新的文献求助10
1秒前
ll完成签到 ,获得积分10
2秒前
豆子发布了新的文献求助10
4秒前
蓝天白云完成签到,获得积分20
4秒前
瑶啊瑶发布了新的文献求助10
6秒前
隐形曼青应助Cee采纳,获得10
7秒前
wzzznh完成签到 ,获得积分10
8秒前
心悦完成签到 ,获得积分10
8秒前
FashionBoy应助陈泽宇采纳,获得10
9秒前
小二郎应助科研通管家采纳,获得10
12秒前
Hello应助科研通管家采纳,获得10
12秒前
寒江雪应助科研通管家采纳,获得10
12秒前
小马甲应助科研通管家采纳,获得10
12秒前
在水一方应助科研通管家采纳,获得10
12秒前
赘婿应助科研通管家采纳,获得10
12秒前
传奇3应助科研通管家采纳,获得10
13秒前
13秒前
liu完成签到 ,获得积分10
14秒前
所所应助Meidina采纳,获得10
14秒前
斯文败类应助miaowk采纳,获得10
17秒前
18秒前
18秒前
18秒前
18秒前
zhangheng完成签到,获得积分20
19秒前
zhq发布了新的文献求助10
23秒前
花生酱发布了新的文献求助20
23秒前
stevben完成签到,获得积分10
25秒前
陈泽宇发布了新的文献求助10
25秒前
26秒前
小么完成签到 ,获得积分10
27秒前
阿赫完成签到 ,获得积分10
28秒前
houfei发布了新的文献求助10
28秒前
苗条的水儿完成签到,获得积分10
29秒前
xiaoguanyan完成签到,获得积分10
30秒前
31秒前
miaowk发布了新的文献求助10
31秒前
烫睫毛完成签到 ,获得积分10
32秒前
持刀的辣条应助MY采纳,获得80
34秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816948
求助须知:如何正确求助?哪些是违规求助? 3360399
关于积分的说明 10407721
捐赠科研通 3078337
什么是DOI,文献DOI怎么找? 1690720
邀请新用户注册赠送积分活动 814023
科研通“疑难数据库(出版商)”最低求助积分说明 767985