UAV-Enabled Federated Learning in Dynamic Environments: Efficiency and Security Trade-off

计算机科学 上传 无线 能源消耗 基站 任务(项目管理) 高效能源利用 计算机网络 保密 方案(数学) 分布式计算 实时计算 计算机安全 工程类 操作系统 电气工程 数学分析 系统工程 电信 数学
作者
Xiaokun Fan,Yali Chen,Min Liu,Sheng Sun,Zhuotao Liu,Ke Xu,Zhongcheng Li
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:73 (5): 6993-7006 被引量:1
标识
DOI:10.1109/tvt.2023.3347912
摘要

Unmanned aerial vehicles (UAVs) can be deployed as flying base stations to provide wireless communication and machine learning (ML) training services for ground user equipments (UEs). Due to privacy concerns, many UEs are not willing to send their raw data to the UAV for model training. Fortunately, federated learning (FL) has emerged as an effective solution to privacy-preserving ML. To balance efficiency and wireless security, this paper proposes a novel secure and efficient FL framework in UAV-enabled networks. Specifically, we design a secure UE selection scheme based on the secrecy outage probability to prevent uploaded model parameters from being wiretapped by a malicious eavesdropper. Then, we formulate a joint UAV placement and resource allocation problem for minimizing training time and UE energy consumption while maximizing the number of secure UEs under the UAV's energy constraint. Considering the random movement of the eavesdropper and UEs as well as online task generation on UEs in practical application scenarios, we present the long short-term memory (LSTM)-based deep deterministic policy gradient (DDPG) algorithm (LSTM-DDPG) to facilitate real-time decision making for the formulated problem. Finally, simulation results show that the proposed LSTM-DDPG algorithm outperforms the state-of-arts in terms of efficiency and security of FL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱迪发布了新的文献求助10
1秒前
1秒前
嘤嘤嘤发布了新的文献求助10
1秒前
pppqqq完成签到,获得积分10
2秒前
大聪明发布了新的文献求助10
2秒前
JamesPei应助周周采纳,获得10
3秒前
思源应助酷酷码采纳,获得10
4秒前
会吐泡泡的小新关注了科研通微信公众号
5秒前
帅气老虎发布了新的文献求助10
5秒前
7秒前
科研通AI5应助通~采纳,获得10
7秒前
7秒前
9秒前
10秒前
Jankin留下了新的社区评论
10秒前
猪猪hero发布了新的文献求助10
10秒前
烟花应助海藻采纳,获得10
10秒前
11秒前
完美世界应助健忘的寒香采纳,获得10
11秒前
11秒前
不语完成签到,获得积分10
12秒前
FFF完成签到,获得积分10
12秒前
熊大猫完成签到,获得积分10
13秒前
13秒前
爆米花应助momo采纳,获得10
14秒前
14秒前
桀桀桀完成签到,获得积分10
15秒前
科研通AI5应助猫不吃狗粮采纳,获得10
15秒前
ll完成签到,获得积分10
16秒前
16秒前
周周发布了新的文献求助10
17秒前
Jiayou Zhang发布了新的文献求助10
17秒前
18秒前
Timi完成签到,获得积分10
18秒前
18秒前
BENpao123发布了新的文献求助10
19秒前
丘比特应助吾身无拘采纳,获得10
20秒前
我是老大应助duke采纳,获得200
20秒前
yigemingzi1发布了新的文献求助20
22秒前
dellajj发布了新的文献求助10
22秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3791854
求助须知:如何正确求助?哪些是违规求助? 3336180
关于积分的说明 10279353
捐赠科研通 3052855
什么是DOI,文献DOI怎么找? 1675375
邀请新用户注册赠送积分活动 803385
科研通“疑难数据库(出版商)”最低求助积分说明 761265