Open-set domain adaptation for scene classification using multi-adversarial learning

对抗制 域适应 计算机科学 人工智能 适应(眼睛) 集合(抽象数据类型) 领域(数学分析) 开放集 计算机视觉 模式识别(心理学) 机器学习 分类器(UML) 数学 心理学 数学分析 离散数学 神经科学 程序设计语言
作者
Juepeng Zheng,Yibin Wen,Mengxuan Chen,Shuai Yuan,Weijia Li,Yi Zhao,Wenzhao Wu,Lixian Zhang,Runmin Dong,Haohuan Fu
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:208: 245-260 被引量:47
标识
DOI:10.1016/j.isprsjprs.2024.01.015
摘要

Domain adaptation methods are able to transfer knowledge across different domains, tackling multi-sensor, multi-temporal or cross-regional remote sensing scenarios as they do not rely on labels or annotations in the target domain. However, most of the previous studies have focused on closed-set domain adaptation, based on the assumption that the source and target domains share identical class labels. Real-world scenarios are typically more complex, and the model could potentially encounter novel classes that are not previously included in the source domain, commonly referred to as “unknown” classes. Here we investigate the open-set domain adaptation scenario in the field of remote sensing scene classification, where there is a partial overlap between the label space of the target domain and that of the source domain. To deal with this problem, we propose a novel open-set domain adaptation method for scene classification using remote sensing images, which is named Multi-Adversarial Open-Set Domain Adaptation Network (MAOSDAN). Our proposed MAOSDAN consists of three main components. First, we employ an attention-aware Open Set BackPropagation (OSBP) to better distinguish the “unknown” and “known” samples for the target domain. Then, an auxiliary adversarial learning is designed for mitigating the negative transfer effect that arises from forcefully aligning the “unknown” target sample in network training. Finally, we adopt an adaptive entropy suppression to increase the probability of samples and prevent some samples from being mistakenly classified. Our proposed MAOSDAN achieves an average score of 75.07% in three publicly available remote sensing datasets, which significantly outperforms other open-set domain adaptation algorithms by attaining 4.52∼17.15%. In addition, MAOSDAN surpasses the baseline deep learning model with 18.12% improvement. A comprehensive experimental evaluation demonstrates that our MAOSDAN shows promising prospects in addressing practical and general domain adaptation scenarios, especially in scenarios where the label set of the source domain is a subset of the target domain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
缥缈易槐发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
方璇发布了新的文献求助10
2秒前
3秒前
张丹兰发布了新的文献求助10
6秒前
6秒前
dada完成签到,获得积分10
7秒前
7秒前
8秒前
JamesPei应助Dorcas采纳,获得10
8秒前
8秒前
8秒前
干豆角发布了新的文献求助10
9秒前
9秒前
10秒前
和谐夕阳发布了新的文献求助10
11秒前
yuaner发布了新的文献求助10
12秒前
可爱的函函应助张丹兰采纳,获得10
13秒前
木子之水完成签到,获得积分20
13秒前
Lily发布了新的文献求助10
13秒前
Jasper应助读书的时候采纳,获得10
14秒前
Hello应助yuaner采纳,获得10
14秒前
14秒前
丘比特应助阔达的语琴采纳,获得30
14秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
SheltonYang发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
sherry123发布了新的文献求助10
16秒前
17秒前
思源应助半夏微凉采纳,获得10
17秒前
xiaohanzai88完成签到,获得积分10
17秒前
乱糟糟发布了新的文献求助10
18秒前
19秒前
lmh发布了新的文献求助10
20秒前
spyro发布了新的文献求助10
20秒前
自信青筠发布了新的文献求助10
22秒前
小唐完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5730846
求助须知:如何正确求助?哪些是违规求助? 5326003
关于积分的说明 15319863
捐赠科研通 4877109
什么是DOI,文献DOI怎么找? 2620078
邀请新用户注册赠送积分活动 1569362
关于科研通互助平台的介绍 1525898