Open-set domain adaptation for scene classification using multi-adversarial learning

对抗制 域适应 计算机科学 人工智能 适应(眼睛) 集合(抽象数据类型) 领域(数学分析) 开放集 计算机视觉 模式识别(心理学) 机器学习 分类器(UML) 数学 心理学 数学分析 离散数学 神经科学 程序设计语言
作者
Juepeng Zheng,Yibin Wen,Mengxuan Chen,Shuai Yuan,Weijia Li,Yi Zhao,Wenzhao Wu,Lixian Zhang,Runmin Dong,Haohuan Fu
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:208: 245-260 被引量:14
标识
DOI:10.1016/j.isprsjprs.2024.01.015
摘要

Domain adaptation methods are able to transfer knowledge across different domains, tackling multi-sensor, multi-temporal or cross-regional remote sensing scenarios as they do not rely on labels or annotations in the target domain. However, most of the previous studies have focused on closed-set domain adaptation, based on the assumption that the source and target domains share identical class labels. Real-world scenarios are typically more complex, and the model could potentially encounter novel classes that are not previously included in the source domain, commonly referred to as “unknown” classes. Here we investigate the open-set domain adaptation scenario in the field of remote sensing scene classification, where there is a partial overlap between the label space of the target domain and that of the source domain. To deal with this problem, we propose a novel open-set domain adaptation method for scene classification using remote sensing images, which is named Multi-Adversarial Open-Set Domain Adaptation Network (MAOSDAN). Our proposed MAOSDAN consists of three main components. First, we employ an attention-aware Open Set BackPropagation (OSBP) to better distinguish the “unknown” and “known” samples for the target domain. Then, an auxiliary adversarial learning is designed for mitigating the negative transfer effect that arises from forcefully aligning the “unknown” target sample in network training. Finally, we adopt an adaptive entropy suppression to increase the probability of samples and prevent some samples from being mistakenly classified. Our proposed MAOSDAN achieves an average score of 75.07% in three publicly available remote sensing datasets, which significantly outperforms other open-set domain adaptation algorithms by attaining 4.52∼17.15%. In addition, MAOSDAN surpasses the baseline deep learning model with 18.12% improvement. A comprehensive experimental evaluation demonstrates that our MAOSDAN shows promising prospects in addressing practical and general domain adaptation scenarios, especially in scenarios where the label set of the source domain is a subset of the target domain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI5应助戴戴采纳,获得10
1秒前
yangling0124完成签到,获得积分20
1秒前
zz完成签到,获得积分10
1秒前
飞一般的亮哥完成签到,获得积分10
2秒前
猎空发布了新的文献求助10
2秒前
3秒前
4秒前
上官若男应助Papayaaa采纳,获得10
4秒前
zhaoshao完成签到,获得积分10
5秒前
9秒前
heibai发布了新的文献求助10
9秒前
打打应助愉悦采纳,获得10
10秒前
louyu完成签到 ,获得积分0
10秒前
10秒前
fayefan完成签到 ,获得积分10
10秒前
岛上书店关注了科研通微信公众号
11秒前
科研通AI5应助微尘之末采纳,获得10
11秒前
彳亍完成签到,获得积分10
11秒前
万能图书馆应助00采纳,获得10
12秒前
13秒前
NagatoYuki完成签到,获得积分0
13秒前
爪爪完成签到,获得积分10
13秒前
14秒前
123发布了新的文献求助10
14秒前
14秒前
15秒前
灰嘞塔德完成签到,获得积分10
15秒前
小巧的虔应助hkh采纳,获得10
15秒前
16秒前
yyyyds完成签到 ,获得积分10
16秒前
HJJHJH发布了新的文献求助10
17秒前
17秒前
17秒前
幕帆应助明亮凡梦采纳,获得20
18秒前
YYQ完成签到,获得积分10
19秒前
Guo完成签到,获得积分10
20秒前
sw98318完成签到,获得积分10
20秒前
灭霸完成签到,获得积分10
20秒前
风铃鸟发布了新的文献求助10
20秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
Grammar in Action:Building comprehensive grammars of talk-in-interaction 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4163516
求助须知:如何正确求助?哪些是违规求助? 3699283
关于积分的说明 11679732
捐赠科研通 3389030
什么是DOI,文献DOI怎么找? 1858423
邀请新用户注册赠送积分活动 919157
科研通“疑难数据库(出版商)”最低求助积分说明 831849