A hierarchical Bayesian modeling framework for identification of Non-Gaussian processes

高斯过程 高斯随机场 高斯分布 维数之咒 克里金 计算机科学 鉴定(生物学) 高斯滤波器 数学 算法 数学优化 应用数学 人工智能 机器学习 物理 植物 量子力学 生物
作者
Menghao Ping,Xinyu Jia,Costas Papadimitriou,Xu Han,Chao Jiang,Wang‐Ji Yan
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:208: 110968-110968 被引量:1
标识
DOI:10.1016/j.ymssp.2023.110968
摘要

Non-Gaussian processes are frequently encountered in engineering problems, posing a challenge when it comes to identification. The main challenge in the identification arises from the fact that a non-Gaussian process can be treated as a collection of infinite dimensional non-Gaussian variables. The application of the hierarchical Bayesian modeling (HBM) framework is constrained due to the inherent complexity of dimensionality and non-Gaussian characteristics associated with these variables. To tackle the issue of dimensionality, the improved orthogonal series expansion (iOSE) representing a non-Gaussian process by time functions with non-Gaussian coefficients, which are readily obtained from discretizing the process at some specific time points, is introduced within the HBM framework. In particular, the iOSE is embedded to convert the identification of a non-Gaussian process into a finite number of non-Gaussian coefficients. Regarding their non-Gaussian characteristics, polynomial chaos expansion (PCE) is used to quantify the uncertainty of the non-Gaussian coefficients with parameters in PCE treated as hyper parameters to be estimated by the HBM framework. The proposed framework is applicable to the identification of both stationary and nonstationary non-Gaussian processes. The effectiveness of non-Gaussian process quantification by the proposed framework is demonstrated using simulated data of a non-stationary extreme value process. The applicability of this approach for non-Gaussian process identification is validated by accurately identifying a stochastic load in a structural dynamic problem. Furthermore, it is successfully applied to the reconstruction of random mode shapes of a building arising from different environmental conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小豆完成签到,获得积分10
1秒前
李健应助房产中介采纳,获得10
2秒前
苍苍完成签到,获得积分10
2秒前
sunshine完成签到,获得积分10
3秒前
hony完成签到,获得积分10
4秒前
4秒前
摸鱼仙人完成签到,获得积分10
5秒前
今后应助带象采纳,获得10
5秒前
合适忆南完成签到,获得积分10
7秒前
一亩蔬菜完成签到,获得积分10
7秒前
7秒前
一帆风顺发布了新的文献求助30
8秒前
陈昭琼发布了新的文献求助10
10秒前
10秒前
11秒前
ash7856发布了新的文献求助10
11秒前
13秒前
你可真下饭完成签到 ,获得积分10
13秒前
彭于晏应助科研通管家采纳,获得30
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
HEIKU应助科研通管家采纳,获得10
13秒前
hanzhipad应助科研通管家采纳,获得10
13秒前
hanzhipad应助科研通管家采纳,获得10
13秒前
hanzhipad应助科研通管家采纳,获得10
13秒前
李爱国应助科研通管家采纳,获得10
13秒前
Ava应助科研通管家采纳,获得10
13秒前
SciGPT应助科研通管家采纳,获得10
13秒前
香蕉觅云应助科研通管家采纳,获得10
13秒前
在水一方应助科研通管家采纳,获得10
14秒前
情怀应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
搜集达人应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
HEIKU应助科研通管家采纳,获得10
14秒前
14秒前
传奇3应助科研通管家采纳,获得10
14秒前
研友_VZG7GZ应助科研通管家采纳,获得10
14秒前
科研助手6应助科研通管家采纳,获得10
14秒前
干净思远完成签到,获得积分10
14秒前
coolkid应助科研通管家采纳,获得20
14秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845856
求助须知:如何正确求助?哪些是违规求助? 3388210
关于积分的说明 10552030
捐赠科研通 3108791
什么是DOI,文献DOI怎么找? 1713127
邀请新用户注册赠送积分活动 824593
科研通“疑难数据库(出版商)”最低求助积分说明 774927