亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improving Prognostication in Pulmonary Hypertension Using AI-quantified Fibrosis and Radiologic Severity Scoring at Baseline CT

医学 特发性肺纤维化 队列 肺动脉高压 比例危险模型 危险系数 纤维化 回顾性队列研究 一致性 肺纤维化 内科学 放射科 置信区间
作者
Krit Dwivedi,Michael Sharkey,Liam Delaney,Samer Alabed,Smitha Rajaram,Catherine Hill,Christopher Johns,Alexander Rothman,Michail Mamalakis,A. A. Roger Thompson,Jim M. Wild,Robin Condliffe,David G. Kiely,Andrew J. Swift
出处
期刊:Radiology [Radiological Society of North America]
卷期号:310 (2) 被引量:9
标识
DOI:10.1148/radiol.231718
摘要

Background There is clinical need to better quantify lung disease severity in pulmonary hypertension (PH), particularly in idiopathic pulmonary arterial hypertension (IPAH) and PH associated with lung disease (PH-LD). Purpose To quantify fibrosis on CT pulmonary angiograms using an artificial intelligence (AI) model and to assess whether this approach can be used in combination with radiologic scoring to predict survival. Materials and Methods This retrospective multicenter study included adult patients with IPAH or PH-LD who underwent incidental CT imaging between February 2007 and January 2019. Patients were divided into training and test cohorts based on the institution of imaging. The test cohort included imaging examinations performed in 37 external hospitals. Fibrosis was quantified using an established AI model and radiologically scored by radiologists. Multivariable Cox regression adjusted for age, sex, World Health Organization functional class, pulmonary vascular resistance, and diffusing capacity of the lungs for carbon monoxide was performed. The performance of predictive models with or without AI-quantified fibrosis was assessed using the concordance index (C index). Results The training and test cohorts included 275 (median age, 68 years [IQR, 60–75 years]; 128 women) and 246 (median age, 65 years [IQR, 51–72 years]; 142 women) patients, respectively. Multivariable analysis showed that AI-quantified percentage of fibrosis was associated with an increased risk of patient mortality in the training cohort (hazard ratio, 1.01 [95% CI: 1.00, 1.02]; P = .04). This finding was validated in the external test cohort (C index, 0.76). The model combining AI-quantified fibrosis and radiologic scoring showed improved performance for predicting patient mortality compared with a model including radiologic scoring alone (C index, 0.67 vs 0.61; P < .001). Conclusion Percentage of lung fibrosis quantified on CT pulmonary angiograms by an AI model was associated with increased risk of mortality and showed improved performance for predicting patient survival when used in combination with radiologic severity scoring compared with radiologic scoring alone. © RSNA, 2024 Supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
zlf发布了新的文献求助10
9秒前
NexusExplorer应助zlf采纳,获得10
25秒前
Yanjun发布了新的文献求助10
48秒前
1分钟前
1分钟前
直率的笑翠完成签到 ,获得积分10
1分钟前
Hello应助西北孤傲的狼采纳,获得10
1分钟前
Yanjun完成签到,获得积分10
1分钟前
joysa完成签到,获得积分10
1分钟前
KiraShaw应助科研通管家采纳,获得20
1分钟前
顾矜应助半凡采纳,获得10
2分钟前
Ds应助风中音响采纳,获得10
2分钟前
Wang完成签到 ,获得积分20
2分钟前
浮游应助sixone采纳,获得10
2分钟前
sixone完成签到,获得积分10
3分钟前
思源应助33采纳,获得10
3分钟前
从来都不会放弃zr完成签到,获得积分10
3分钟前
迷路的初柔完成签到 ,获得积分10
3分钟前
spring完成签到,获得积分20
3分钟前
爱思考的小笨笨完成签到,获得积分10
3分钟前
KiraShaw应助科研通管家采纳,获得10
3分钟前
李爱国应助科研通管家采纳,获得10
3分钟前
嘻嘻应助科研通管家采纳,获得10
3分钟前
科目三应助科研通管家采纳,获得10
3分钟前
3分钟前
kash想毕业发布了新的文献求助10
3分钟前
背书强完成签到 ,获得积分10
3分钟前
Phy给Phy的求助进行了留言
4分钟前
4分钟前
spring发布了新的文献求助10
4分钟前
花花123发布了新的文献求助10
4分钟前
杨舒舒完成签到,获得积分10
4分钟前
4分钟前
桐桐应助spring采纳,获得10
4分钟前
Phy发布了新的文献求助10
4分钟前
科目三应助花花123采纳,获得10
4分钟前
5分钟前
sidashu发布了新的文献求助10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Solid-Liquid Interfaces 600
A study of torsion fracture tests 510
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4753398
求助须知:如何正确求助?哪些是违规求助? 4097824
关于积分的说明 12678591
捐赠科研通 3810966
什么是DOI,文献DOI怎么找? 2104034
邀请新用户注册赠送积分活动 1129224
关于科研通互助平台的介绍 1006440