Development of interpretable machine learning models associated with environmental chemicals to predict all-cause and specific-cause mortality:A longitudinal study based on NHANES

全国健康与营养检查调查 医学 环境卫生 人口学 人口 社会学
作者
Siyu Duan,Yafei Wu,Junmin Zhu,Xing Wang,Yaheng Zhang,Chenming Gu,Ya Fang
出处
期刊:Ecotoxicology and Environmental Safety [Elsevier BV]
卷期号:270: 115864-115864 被引量:3
标识
DOI:10.1016/j.ecoenv.2023.115864
摘要

Limited information is available on potential predictive value of environmental chemicals for mortality. Our study aimed to investigate the associations between 43 of 8 classes representative environmental chemicals in serum/urine and mortality, and further develop the interpretable machine learning models associated with environmental chemicals to predict mortality. A total of 1602 participants were included from the National Health and Nutrition Examination Survey (NHANES). During 154,646 person-months of follow-up, 127 deaths occurred. We found that machine learning showed promise in predicting mortality. CoxPH was selected as the optimal model for predicting all-cause mortality with time-dependent AUROC of 0.953 (95%CI: 0.951–0.955). Coxnet was the best model for predicting cardiovascular disease (CVD) and cancer mortality with time-dependent AUROCs of 0.935 (95%CI: 0.933–0.936) and 0.850 (95%CI: 0.844–0.857). Based on clinical variables, adding environmental chemicals could enhance the predictive ability of cancer mortality (P < 0.05). Some environmental chemicals contributed more to the models than traditional clinical variables. Combined the results of association and prediction models by interpretable machine learning analyses, we found urinary methyl paraben (MP) and urinary 2-napthol (2-NAP) were negatively associated with all-cause mortality, while serum cadmium (Cd) was positively associated with all-cause mortality. Urinary bisphenol A (BPA) was positively associated with CVD mortality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大橙子完成签到,获得积分10
1秒前
1秒前
3秒前
ghgh发布了新的文献求助10
4秒前
科研通AI5应助称心寒松采纳,获得10
5秒前
陈里里完成签到 ,获得积分10
5秒前
香蕉觅云应助富二蛋采纳,获得10
6秒前
JNL发布了新的文献求助10
7秒前
sg完成签到,获得积分10
7秒前
Ander完成签到 ,获得积分10
7秒前
pluvia完成签到,获得积分10
7秒前
赘婿应助supermaltose采纳,获得10
8秒前
阳光晓蓝发布了新的文献求助10
8秒前
张智琦完成签到,获得积分20
11秒前
11秒前
12秒前
111关注了科研通微信公众号
12秒前
13秒前
13秒前
13秒前
111111完成签到,获得积分10
14秒前
HDrinnk完成签到,获得积分10
15秒前
yokkio发布了新的文献求助10
15秒前
可爱的函函应助JNL采纳,获得10
15秒前
xrkxrk完成签到 ,获得积分0
15秒前
球球完成签到,获得积分10
16秒前
17秒前
英勇雅琴发布了新的文献求助10
17秒前
沫柠完成签到 ,获得积分10
17秒前
如愿发布了新的文献求助30
18秒前
18秒前
称心寒松发布了新的文献求助10
19秒前
暗月皇发布了新的文献求助10
19秒前
Ava应助yshog采纳,获得10
20秒前
20秒前
21秒前
21秒前
22秒前
Owen应助阳光晓蓝采纳,获得10
23秒前
乐宝完成签到,获得积分10
23秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781113
求助须知:如何正确求助?哪些是违规求助? 3326545
关于积分的说明 10227650
捐赠科研通 3041675
什么是DOI,文献DOI怎么找? 1669552
邀请新用户注册赠送积分活动 799100
科研通“疑难数据库(出版商)”最低求助积分说明 758734