EResNet‐SVM: an overfitting‐relieved deep learning model for recognition of plant diseases and pests

过度拟合 人工智能 卷积神经网络 机器学习 支持向量机 分类器(UML) 计算机科学 特征提取 深度学习 模式识别(心理学) 人工神经网络
作者
Haitao Xiong,Juan Li,Tiewei Wang,Fan Zhang,Ziyang Wang
出处
期刊:Journal of the Science of Food and Agriculture [Wiley]
卷期号:104 (10): 6018-6034 被引量:7
标识
DOI:10.1002/jsfa.13462
摘要

Abstract BACKGROUND The accurate recognition and early warning for plant diseases and pests are a prerequisite of intelligent prevention and control for plant diseases and pests. As a result of the phenotype similarity of the hazarded plant after plant diseases and pests occur, as well as the interference of the external environment, traditional deep learning models often face the overfitting problem in phenotype recognition of plant diseases and pests, which leads to not only the slow convergence speed of the network, but also low recognition accuracy. RESULTS Motivated by the above problems, the present study proposes a deep learning model EResNet‐support vector machine (SVM) to alleviate the overfitting for the recognition and classification of plant diseases and pests. First, the feature extraction capability of the model is improved by increasing feature extraction layers in the convolutional neural network. Second, the order‐reduced modules are embedded and a sparsely activated function is introduced to reduce model complexity and alleviate overfitting. Finally, a classifier fused by SVM and fully connected layers are introduced to transforms the original non‐linear classification problem into a linear classification problem in high‐dimensional space to further alleviate the overfitting and improve the recognition accuracy of plant diseases and pests. The ablation experiments further demonstrate that the fused structure can effectively alleviate the overfitting and improve the recognition accuracy. The experimental recognition results for typical plant diseases and pests show that the proposed EResNet‐SVM model has 99.30% test accuracy for eight conditions (seven plant diseases and one normal), which is 5.90% higher than the original ResNet18. Compared with the classic AlexNet, GoogLeNet, Xception, SqueezeNet and DenseNet201 models, the accuracy of the EResNet‐SVM model has improved by 5.10%, 7%, 8.10%, 6.20% and 1.90%, respectively. The testing accuracy of the EResNet‐SVM model for 6 insect pests is 100%, which is 3.90% higher than that of the original ResNet18 model. CONCLUSION This research provides not only useful references for alleviating the overfitting problem in deep learning, but also a theoretical and technical support for the intelligent detection and control of plant diseases and pests. © 2024 Society of Chemical Industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sherwin完成签到,获得积分10
1秒前
6秒前
小w完成签到,获得积分10
11秒前
laplatom完成签到,获得积分10
11秒前
一一一发布了新的文献求助10
12秒前
激动的雪冥完成签到,获得积分10
13秒前
小丘2024发布了新的文献求助10
14秒前
不再选择完成签到,获得积分10
15秒前
等待的谷波完成签到 ,获得积分10
18秒前
彭于晏应助Ceceliayyy采纳,获得10
18秒前
LIUHUIHUI发布了新的文献求助10
18秒前
19秒前
天天完成签到,获得积分10
20秒前
21秒前
22秒前
23秒前
体贴的小susu完成签到,获得积分10
23秒前
Ava应助Ceceliayyy采纳,获得10
24秒前
莫等闲完成签到,获得积分10
24秒前
追寻听南发布了新的文献求助20
25秒前
尊敬的惠发布了新的文献求助10
27秒前
28秒前
29秒前
科研通AI5应助北北贝贝采纳,获得10
31秒前
ddd发布了新的文献求助10
32秒前
Lucas应助阿九采纳,获得10
32秒前
33秒前
WSH发布了新的文献求助10
34秒前
34秒前
tomato发布了新的文献求助10
35秒前
虚拟的夜白完成签到,获得积分10
35秒前
Kelvin.Tsi完成签到 ,获得积分10
35秒前
35秒前
36秒前
SciGPT应助hahhahahh采纳,获得10
36秒前
Hans完成签到,获得积分10
37秒前
xxxxxb发布了新的文献求助10
37秒前
38秒前
陶醉的冰珍完成签到,获得积分20
38秒前
39秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799327
求助须知:如何正确求助?哪些是违规求助? 3344954
关于积分的说明 10322665
捐赠科研通 3061436
什么是DOI,文献DOI怎么找? 1680323
邀请新用户注册赠送积分活动 807007
科研通“疑难数据库(出版商)”最低求助积分说明 763453