基因组
计算生物学
生物
体细胞
推论
错误发现率
分割
结构变异
遗传学
人工智能
计算机科学
基因
作者
Songbo Wang,Jiadong Lin,Peng Jia,Tun Xu,Xiujuan Li,Y Liu,Dan Xu,Stephen J. Bush,Deyu Meng,Kai Ye
标识
DOI:10.1038/s41587-024-02190-7
摘要
Abstract Long-read-based de novo and somatic structural variant (SV) discovery remains challenging, necessitating genomic comparison between samples. We developed SVision-pro, a neural-network-based instance segmentation framework that represents genome-to-genome-level sequencing differences visually and discovers SV comparatively between genomes without any prerequisite for inference models. SVision-pro outperforms state-of-the-art approaches, in particular, the resolving of complex SVs is improved, with low Mendelian error rates, high sensitivity of low-frequency SVs and reduced false-positive rates compared with SV merging approaches.
科研通智能强力驱动
Strongly Powered by AbleSci AI