Serologic Detection of Hepatocellular Carcinoma: Application of Machine Learning and Implications for Diagnostic Models

随机森林 接收机工作特性 人工智能 肝细胞癌 机器学习 逻辑回归 计算机科学 医学 决策树 内科学
作者
Philip J. Johnson,Ehsan Bhatti,Hidenori Toyoda,Shan He
出处
期刊:JCO clinical cancer informatics [Lippincott Williams & Wilkins]
卷期号: (8) 被引量:3
标识
DOI:10.1200/cci.23.00199
摘要

PURPOSE The gender, age, lens culinaris agglutinin-reactive fraction of alphafetoprotein, alphafetoprotein, des-gamma-carboxyprothrombin (GALAD) score is a biomarker-based statistical model for the serologic diagnosis of hepatocellular carcinoma (HCC) that has been developed and validated using the case-control approach with a view to early detection. Performance has, however, been suboptimal in the first prospective studies which better reflect the real-world situation. In this article, we report the application of machine learning to a large, prospectively accrued, HCC surveillance data set. PATIENTS AND METHODS Models were built on a cohort of 3,473 patients with chronic liver disease within a rigorous surveillance program between 1998 and 2014, during which 459 patients with HCC were detected. Two random forest (RF) models were trained. The first RF model uses the same variables as the original GALAD model (GALAD-RF); the second is based on routinely available clinical and laboratory features (RF-practical). For comparison, we evaluated a logistic regression GALAD model trained on this longitudinal prospective data set (termed GALAD-Ogaki). RESULTS Models were evaluated using a repetitive cross-validation approach with the metrics averaged over 100 independent runs. As judged by area under the receiver operator curve (AUROC) and F1 score, the GALAD RF model significantly outperformed the original GALAD model. The RF-practical model also outperformed the original GALAD model in terms of both AUROC and F1 score, and both models outperformed the individual biomarkers. An online web application that implemented the GALAD-RF and RF-practical models is presented. CONCLUSION RF-based models improve on the diagnostic performance of the original GALAD model in the setting of a standard HCC surveillance program. Further prospective validation studies are warranted using these models and could be expanded to offer prediction of risk of HCC development over defined periods of time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_Z6W9B8发布了新的文献求助10
1秒前
魔幻流沙完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
3秒前
yyx发布了新的文献求助10
5秒前
6秒前
拍不醒的薄荷完成签到,获得积分10
8秒前
小二郎发布了新的文献求助10
8秒前
打打应助WWY采纳,获得10
9秒前
Alexander L完成签到,获得积分10
10秒前
完美世界应助大佬采纳,获得10
10秒前
调皮傲易完成签到 ,获得积分10
10秒前
茂茂发布了新的文献求助20
12秒前
whuhustwit发布了新的文献求助10
13秒前
孤独尔白应助研友_Z6W9B8采纳,获得10
14秒前
16秒前
汉堡包应助ZhangMingHe采纳,获得10
16秒前
16秒前
17秒前
wuxufang驳回了Rita应助
17秒前
FashionBoy应助科研通管家采纳,获得10
19秒前
深情安青应助科研通管家采纳,获得10
19秒前
英俊的铭应助科研通管家采纳,获得10
19秒前
脑洞疼应助科研通管家采纳,获得10
19秒前
打打应助科研通管家采纳,获得10
19秒前
赘婿应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
lucky完成签到,获得积分10
19秒前
大佬发布了新的文献求助10
21秒前
陳.发布了新的文献求助10
22秒前
WWY发布了新的文献求助10
23秒前
大鲨碧发布了新的文献求助20
24秒前
26秒前
端庄的如花完成签到 ,获得积分10
26秒前
27秒前
李金纹完成签到,获得积分20
28秒前
29秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795227
求助须知:如何正确求助?哪些是违规求助? 3340218
关于积分的说明 10299325
捐赠科研通 3056829
什么是DOI,文献DOI怎么找? 1677185
邀请新用户注册赠送积分活动 805274
科研通“疑难数据库(出版商)”最低求助积分说明 762420