Work Function Prediction by Graph Neural Networks for Configurationally Hybridized Boron-Doped Graphene

石墨烯 工作职能 兴奋剂 材料科学 人工神经网络 计算机科学 密度泛函理论 图形 生物系统 纳米技术 人工智能 计算化学 理论计算机科学 化学 光电子学 生物 图层(电子)
作者
Qingwei Zhang,Lin Cai,Ningsheng Liao,Yunhua Lu,Junan Zhang,Chao Zhang,Kangli Zeng
出处
期刊:Langmuir [American Chemical Society]
卷期号:40 (13): 7087-7094 被引量:2
标识
DOI:10.1021/acs.langmuir.4c00228
摘要

Graphene, serving as electrodes, is widely applied in electronic and optoelectronic devices. Work function as one of the fundamental intrinsic characteristics of graphene directly affects the interfacial properties of the electrodes, thereby affecting the performance of the devices. Much work has been done to regulate the work function of graphene to expand its application fields, and doping has been demonstrated as an effective method. However, the numerous types of doped graphene make the investigation of its work function time-consuming and labor-intensive. In order to quickly obtain the relationship between the structure and property, a deep learning method is employed to predict the work function in this study. Specifically, a data set of over 30,000 compositions with the work function on boron-doped graphene at different concentrations and doping positions via density functional theory simulations was established through ab initio calculations. Then, a novel fusion model (GT-Net) combining transformers and graph neural networks (GNNs) was proposed. After that, improved effective GNN-based descriptors were developed. Finally, three different GNN methods were compared, and the results show that the proposed method could accurately predicate the work function with the R2 = 0.975 and RMSE = 0.027. This study not only provides the possibility of designing materials with specific properties at the atomic level but also demonstrates the performance of GNNs on graph-level tasks with the same graph structure and atomic number.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JUGG发布了新的文献求助10
刚刚
Jasper应助Hustic采纳,获得10
刚刚
刚刚
1秒前
星辰大海应助老马采纳,获得10
1秒前
大米饭顺利毕业完成签到 ,获得积分10
1秒前
1秒前
寻道图强应助西呱呱采纳,获得50
1秒前
搜集达人应助123采纳,获得10
2秒前
2秒前
2秒前
HIT_C完成签到 ,获得积分20
2秒前
爆米花应助111采纳,获得10
3秒前
苗硕恒发布了新的文献求助10
3秒前
4秒前
一期一會发布了新的文献求助10
4秒前
Ethereal发布了新的文献求助10
5秒前
5秒前
不吃香菜发布了新的文献求助10
6秒前
大个应助ll采纳,获得10
7秒前
领导范儿应助冷静的奇迹采纳,获得10
7秒前
FashionBoy应助llee2005采纳,获得100
8秒前
8秒前
as_eichi完成签到,获得积分10
9秒前
dwclongy发布了新的文献求助10
9秒前
9秒前
深情安青应助刘运丽采纳,获得20
9秒前
9秒前
墨然然发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
呃呃呃发布了新的文献求助10
12秒前
13秒前
zhulinkin完成签到 ,获得积分10
13秒前
14秒前
顾矜应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
JamesPei应助优雅的可冥采纳,获得10
14秒前
pluto应助科研通管家采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546479
求助须知:如何正确求助?哪些是违规求助? 4632273
关于积分的说明 14626188
捐赠科研通 4573977
什么是DOI,文献DOI怎么找? 2507901
邀请新用户注册赠送积分活动 1484538
关于科研通互助平台的介绍 1455722