AsymMirai: Interpretable Mammography-based Deep Learning Model for 1–5-year Breast Cancer Risk Prediction

医学 乳腺摄影术 接收机工作特性 乳腺癌 深度学习 机器学习 人工智能 癌症 内科学 计算机科学
作者
Jon Donnelly,Luke Moffett,Alina Jade Barnett,Hari Trivedi,Fides R. Schwartz,Joseph Y. Lo,Cynthia Rudin
出处
期刊:Radiology [Radiological Society of North America]
卷期号:310 (3) 被引量:10
标识
DOI:10.1148/radiol.232780
摘要

Background Mirai, a state-of-the-art deep learning–based algorithm for predicting short-term breast cancer risk, outperforms standard clinical risk models. However, Mirai is a black box, risking overreliance on the algorithm and incorrect diagnoses. Purpose To identify whether bilateral dissimilarity underpins Mirai's reasoning process; create a simplified, intelligible model, AsymMirai, using bilateral dissimilarity; and determine if AsymMirai may approximate Mirai's performance in 1–5-year breast cancer risk prediction. Materials and Methods This retrospective study involved mammograms obtained from patients in the EMory BrEast imaging Dataset, known as EMBED, from January 2013 to December 2020. To approximate 1–5-year breast cancer risk predictions from Mirai, another deep learning–based model, AsymMirai, was built with an interpretable module: local bilateral dissimilarity (localized differences between left and right breast tissue). Pearson correlation coefficients were computed between the risk scores of Mirai and those of AsymMirai. Subgroup analysis was performed in patients for whom AsymMirai's year-over-year reasoning was consistent. AsymMirai and Mirai risk scores were compared using the area under the receiver operating characteristic curve (AUC), and 95% CIs were calculated using the DeLong method. Results Screening mammograms (n = 210 067) from 81 824 patients (mean age, 59.4 years ± 11.4 [SD]) were included in the study. Deep learning–extracted bilateral dissimilarity produced similar risk scores to those of Mirai (1-year risk prediction, r = 0.6832; 4–5-year prediction, r = 0.6988) and achieved similar performance as Mirai. For AsymMirai, the 1-year breast cancer risk AUC was 0.79 (95% CI: 0.73, 0.85) (Mirai, 0.84; 95% CI: 0.79, 0.89; P = .002), and the 5-year risk AUC was 0.66 (95% CI: 0.63, 0.69) (Mirai, 0.71; 95% CI: 0.68, 0.74; P < .001). In a subgroup of 183 patients for whom AsymMirai repeatedly highlighted the same tissue over time, AsymMirai achieved a 3-year AUC of 0.92 (95% CI: 0.86, 0.97). Conclusion Localized bilateral dissimilarity, an imaging marker for breast cancer risk, approximated the predictive power of Mirai and was a key to Mirai's reasoning. © RSNA, 2024 Supplemental material is available for this article See also the editorial by Freitas in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HBY发布了新的文献求助10
1秒前
1秒前
涨涨涨发布了新的文献求助10
2秒前
科研通AI5应助西贝采纳,获得10
2秒前
copy发布了新的文献求助10
3秒前
碧蓝亦玉发布了新的文献求助10
4秒前
6秒前
接点私活发布了新的文献求助10
6秒前
6秒前
欣慰的盼芙完成签到 ,获得积分10
8秒前
呼呼呼完成签到,获得积分10
8秒前
涨涨涨完成签到,获得积分10
9秒前
10秒前
接点私活完成签到,获得积分10
12秒前
13秒前
拼搏的败完成签到 ,获得积分10
14秒前
guozizi发布了新的文献求助10
15秒前
无私绿兰完成签到 ,获得积分10
16秒前
misong发布了新的文献求助10
17秒前
19秒前
19秒前
自然黄豆应助KevinDante采纳,获得10
20秒前
哈哈哈开开心心完成签到,获得积分10
22秒前
Joy发布了新的文献求助10
23秒前
25秒前
Charlotte发布了新的文献求助10
30秒前
30秒前
33秒前
33秒前
Joy完成签到,获得积分10
34秒前
爱吃百香果完成签到,获得积分20
34秒前
35秒前
36秒前
37秒前
37秒前
奋斗藏花发布了新的文献求助10
39秒前
科研通AI2S应助Eleven采纳,获得10
39秒前
努力加油煤老八完成签到 ,获得积分10
41秒前
八宝完成签到 ,获得积分10
41秒前
41秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782187
求助须知:如何正确求助?哪些是违规求助? 3327590
关于积分的说明 10232533
捐赠科研通 3042546
什么是DOI,文献DOI怎么找? 1670040
邀请新用户注册赠送积分活动 799600
科研通“疑难数据库(出版商)”最低求助积分说明 758844