亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

AsymMirai: Interpretable Mammography-based Deep Learning Model for 1–5-year Breast Cancer Risk Prediction

医学 乳腺摄影术 接收机工作特性 乳腺癌 深度学习 机器学习 人工智能 癌症 内科学 计算机科学
作者
Jon Donnelly,Luke Moffett,Alina Jade Barnett,Hari Trivedi,Fides R. Schwartz,Joseph Y. Lo,Cynthia Rudin
出处
期刊:Radiology [Radiological Society of North America]
卷期号:310 (3) 被引量:11
标识
DOI:10.1148/radiol.232780
摘要

Background Mirai, a state-of-the-art deep learning–based algorithm for predicting short-term breast cancer risk, outperforms standard clinical risk models. However, Mirai is a black box, risking overreliance on the algorithm and incorrect diagnoses. Purpose To identify whether bilateral dissimilarity underpins Mirai's reasoning process; create a simplified, intelligible model, AsymMirai, using bilateral dissimilarity; and determine if AsymMirai may approximate Mirai's performance in 1–5-year breast cancer risk prediction. Materials and Methods This retrospective study involved mammograms obtained from patients in the EMory BrEast imaging Dataset, known as EMBED, from January 2013 to December 2020. To approximate 1–5-year breast cancer risk predictions from Mirai, another deep learning–based model, AsymMirai, was built with an interpretable module: local bilateral dissimilarity (localized differences between left and right breast tissue). Pearson correlation coefficients were computed between the risk scores of Mirai and those of AsymMirai. Subgroup analysis was performed in patients for whom AsymMirai's year-over-year reasoning was consistent. AsymMirai and Mirai risk scores were compared using the area under the receiver operating characteristic curve (AUC), and 95% CIs were calculated using the DeLong method. Results Screening mammograms (n = 210 067) from 81 824 patients (mean age, 59.4 years ± 11.4 [SD]) were included in the study. Deep learning–extracted bilateral dissimilarity produced similar risk scores to those of Mirai (1-year risk prediction, r = 0.6832; 4–5-year prediction, r = 0.6988) and achieved similar performance as Mirai. For AsymMirai, the 1-year breast cancer risk AUC was 0.79 (95% CI: 0.73, 0.85) (Mirai, 0.84; 95% CI: 0.79, 0.89; P = .002), and the 5-year risk AUC was 0.66 (95% CI: 0.63, 0.69) (Mirai, 0.71; 95% CI: 0.68, 0.74; P < .001). In a subgroup of 183 patients for whom AsymMirai repeatedly highlighted the same tissue over time, AsymMirai achieved a 3-year AUC of 0.92 (95% CI: 0.86, 0.97). Conclusion Localized bilateral dissimilarity, an imaging marker for breast cancer risk, approximated the predictive power of Mirai and was a key to Mirai's reasoning. © RSNA, 2024 Supplemental material is available for this article See also the editorial by Freitas in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
积极向上的阿闯完成签到,获得积分20
9秒前
9秒前
大芋头发布了新的文献求助10
18秒前
20秒前
21秒前
26秒前
44秒前
58秒前
zxq1996完成签到 ,获得积分10
1分钟前
1分钟前
幽默的醉冬完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
酷波er应助ents采纳,获得10
2分钟前
El发布了新的文献求助10
2分钟前
华仔应助El采纳,获得10
2分钟前
2分钟前
ents发布了新的文献求助10
2分钟前
深情飞丹完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
alex_zhao完成签到,获得积分10
3分钟前
阿巴发布了新的文献求助10
3分钟前
薅住科研的头发完成签到,获得积分10
3分钟前
NexusExplorer应助科研通管家采纳,获得10
3分钟前
4分钟前
科目三应助阿巴采纳,获得10
4分钟前
jjjj完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
LIUDEHUA发布了新的文献求助10
4分钟前
千里草完成签到,获得积分10
4分钟前
5分钟前
汉字发布了新的文献求助10
5分钟前
yindi1991完成签到 ,获得积分10
5分钟前
5分钟前
zyp发布了新的文献求助10
5分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 680
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
PBSM: Predictive Bi-Preference Stable Matching in Spatial Crowdsourcing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4124410
求助须知:如何正确求助?哪些是违规求助? 3662303
关于积分的说明 11590322
捐赠科研通 3362598
什么是DOI,文献DOI怎么找? 1847662
邀请新用户注册赠送积分活动 912036
科研通“疑难数据库(出版商)”最低求助积分说明 827849