Intelligent Identification and Classification of Small UAV Remote Control Signals Based on Improved Yolov5-7.0

计算机科学 鉴定(生物学) 人工智能 控制(管理) 模式识别(心理学) 遥感 机器学习 植物 生物 地质学
作者
MinJing Li,Donglai Hao,J Wang,Shuozhe Wang,Zijian Zhong,B. Zhao
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 41688-41703
标识
DOI:10.1109/access.2024.3376738
摘要

At present, an increasing number of small UAVs(Unmanned Aerial Vehicles) are commercialized and common, and the application of small UAVs has very good development prospects, such as UAV distribution services, UAV aerial photography services, and UAV formation performance. However, the misuse of small drones poses a significant threat. Lawbreakers use small drones equipped with various sensors to spy on personal privacy, steal corporate secrets, and threaten national conferences, which have had many adverse effects on society. In future wars, these small drones will perhaps be used on the battlefield along with high-end weapons. Therefore, it is necessary to find a solution for effectively identifying the basic information of UAV. For the existence of UAV and various small UAV types, this paper proposes a combination of RF sensing and target detection techniques with target detection algorithms to learn RF signal frequency frequency hopping features to detect UAV presence and identify the detected UAV. First, the RF signal of the UAV was obtained in real time by a software radio, and the time-frequency analysis of the short-time Fourier transform and wavelet transform is performed to generate frequency domain images with retained frequency hopping features. Then, the improved Yolov5-7.0 target detection model was employed for training, and finally, the trained model was used for identification and classification. The results showed that the method can effectively assist the detection and classification of UAVs that were obtained by identifying and classifying 5400 unlabeled images. The F1 score was 0.93, and the three assessment measures of P(Precision), R(Recall), and mAP(mean Average Precision) were 1.00, 1.00, and 0.967, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秀丽笑容完成签到,获得积分10
1秒前
吴大打完成签到,获得积分10
3秒前
iNk应助jiangyao采纳,获得10
3秒前
翻斗花园612完成签到,获得积分10
4秒前
樊尔风发布了新的文献求助10
4秒前
5秒前
die完成签到 ,获得积分10
7秒前
wys完成签到 ,获得积分10
10秒前
吴大打发布了新的文献求助10
11秒前
12秒前
13秒前
樊尔风发布了新的文献求助10
14秒前
哈哈哈哈完成签到,获得积分10
14秒前
孙雪冰完成签到,获得积分20
15秒前
英勇雅琴发布了新的文献求助10
16秒前
科研通AI5应助科研通管家采纳,获得200
17秒前
香蕉觅云应助科研通管家采纳,获得10
17秒前
XSCOOP发布了新的文献求助25
17秒前
斯文败类应助科研通管家采纳,获得50
17秒前
17秒前
17秒前
想跟这个世界讲个道理完成签到,获得积分10
19秒前
19秒前
Ava应助Yue采纳,获得10
20秒前
宣宣完成签到 ,获得积分10
22秒前
海虎爆破拳完成签到,获得积分10
23秒前
24秒前
jojo完成签到 ,获得积分10
24秒前
24秒前
Kora发布了新的文献求助30
26秒前
希望天下0贩的0应助hwezhu采纳,获得10
27秒前
Whassupww完成签到,获得积分10
28秒前
liberation完成签到 ,获得积分0
31秒前
32秒前
xiaobizaizhi233完成签到,获得积分10
32秒前
草上飞完成签到 ,获得积分10
34秒前
36秒前
39秒前
39秒前
41秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781132
求助须知:如何正确求助?哪些是违规求助? 3326623
关于积分的说明 10227813
捐赠科研通 3041744
什么是DOI,文献DOI怎么找? 1669585
邀请新用户注册赠送积分活动 799104
科研通“疑难数据库(出版商)”最低求助积分说明 758751