清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Fusing Multi-Level Features from Audio and Contextual Sentence Embedding from Text for Interview-Based Depression Detection

计算机科学 嵌入 判决 自然语言处理 萧条(经济学) 人工智能 语音识别 经济 宏观经济学
作者
Junqi Xue,Ruihan Qin,Xinxu Zhou,Honghai Liu,Min Zhang,Zhiguo Zhang
标识
DOI:10.1109/icassp48485.2024.10446253
摘要

Automatic depression detection based on audio and text representations from participants' interviews has attracted widespread attention. However, most of previous researches only used one type of feature of one single modality for depression detection, so that the rich information of audio and text from interviews has not been fully utilized. Moreover, an effective multi-modal fusion approach to leverage the independence among audio and text representations is still lacking. To address these problems, we propose a multi-modal fusion depression detection model based on the interaction of multilevel audio features and text sentence embedding. Specifically, we first extract Low-Level Descriptors (LLDs), mel-spectrogram features, and wav2vec features from the audio. Then we design a Multi-level Audio Features Interaction Module (MAFIM) to fuse these three levels of features for a comprehensive audio representation. For interview text, we use pre-trained BERT to extract sentence-level embedding. Further, to effectively fuse audio and text representations, we design a Channel Attention-based Multi-modal Fusion Module (CAMFM) by taking into account the independence and correlation between two different modalities. Our proposed model shows better performance on two datasets, DAIC-WOZ and EATD-Corpus, than existing methods, so it has a high potential to be applied for interview-based depression detection in practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天玄发布了新的文献求助10
14秒前
24秒前
31秒前
天玄发布了新的文献求助10
36秒前
47秒前
糟糕的翅膀完成签到,获得积分10
1分钟前
cy0824完成签到 ,获得积分10
1分钟前
1分钟前
披着羊皮的狼完成签到 ,获得积分10
1分钟前
1分钟前
天玄发布了新的文献求助10
1分钟前
1分钟前
无悔完成签到 ,获得积分10
1分钟前
迷茫的一代完成签到,获得积分10
1分钟前
1分钟前
天玄发布了新的文献求助10
1分钟前
2分钟前
2分钟前
2分钟前
wzbc完成签到,获得积分10
2分钟前
2分钟前
2分钟前
南寅完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
研友_nxw2xL完成签到,获得积分10
5分钟前
muriel完成签到,获得积分0
5分钟前
5分钟前
如歌完成签到,获得积分10
5分钟前
5分钟前
走啊走完成签到,获得积分10
5分钟前
6分钟前
6分钟前
6分钟前
cheryjay发布了新的文献求助10
6分钟前
wen完成签到,获得积分10
6分钟前
刘刘完成签到 ,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482509
求助须知:如何正确求助?哪些是违规求助? 4583305
关于积分的说明 14389165
捐赠科研通 4512439
什么是DOI,文献DOI怎么找? 2472945
邀请新用户注册赠送积分活动 1459144
关于科研通互助平台的介绍 1432624