Remaining Useful Life Prediction Method Based on Multisensor Fusion Under Time-Varying Operating Conditions

融合 传感器融合 计算机科学 人工智能 哲学 语言学
作者
Xin Huang,Wenwu Chen,Dingrong Qu,S. Qu,Guangrui Wen
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-13
标识
DOI:10.1109/tim.2024.3378308
摘要

Accurate prediction of remaining useful life (RUL) serves as the foundation for predictive maintenance of industrial equipment. In recent years, the fusion of multi-source information has achieved remarkable advancements for the development and application of RUL prediction. However, under time-varying operating conditions, the distribution of monitoring data exhibit time-varying characteristics, posing two challenges for RUL prediction in this scenario. One is adaptive decoupling of operating condition data and monitoring data, and the other is adaptive weighting of multi-source information. To address these challenges, a novel method for RUL prediction is proposed in this paper driven by the fusion of multi-source information under time-varying operating conditions. The proposed approach is designed to track the degradation process of equipment in scenarios involving cyclic variation and multiple levels in operating conditions. An optimization function is constructed to comprehensively characterize the frequency domain distribution of current signals and the continuity of health index over time. Then, a time-varying observation matrix for the degradation state space model is derived, which aims to eliminate the influence of operating condition data on degradation information. Two Kalman filter models are developed based on linear degradation model and double exponential degradation model focused on different stages of equipment degradation, which can calculate time-varying weights for vibration and sound information at different time coordinates. In this way, a multidimensional data mapping from multi-source information to the degradation curve is established under time-varying operating conditions. In order to verify the superiority of the proposed method in RUL prediction, two sets of run-to-failure experimental dataset are studied and analyzed. The result demonstrates that the proposed method achieves superior performance compared with single-source information methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
邵1发布了新的文献求助10
刚刚
1秒前
jianhua发布了新的文献求助10
4秒前
5秒前
Owen应助知道采纳,获得10
5秒前
6秒前
6秒前
8秒前
hkh发布了新的文献求助10
9秒前
赘婿应助紫陌采纳,获得10
9秒前
GY发布了新的文献求助10
10秒前
cf2v发布了新的文献求助10
11秒前
11秒前
hay完成签到,获得积分10
11秒前
IV完成签到,获得积分10
12秒前
12秒前
饱满若灵发布了新的文献求助10
13秒前
14秒前
CodeCraft应助科研通管家采纳,获得10
15秒前
SciGPT应助科研通管家采纳,获得10
15秒前
huohuo143完成签到,获得积分10
15秒前
上官若男应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
酷波er应助科研通管家采纳,获得10
15秒前
所所应助科研通管家采纳,获得10
15秒前
16秒前
16秒前
调皮冬日关注了科研通微信公众号
18秒前
18秒前
ZZCrazy发布了新的文献求助10
19秒前
MHCL完成签到 ,获得积分10
19秒前
石头发布了新的文献求助10
19秒前
慕青应助delbin采纳,获得10
23秒前
平淡的乐曲完成签到,获得积分10
24秒前
暴走火箭筒完成签到,获得积分10
24秒前
酱子完成签到 ,获得积分10
25秒前
25秒前
26秒前
ZZCrazy完成签到,获得积分10
26秒前
威武的匕完成签到,获得积分10
26秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780028
求助须知:如何正确求助?哪些是违规求助? 3325388
关于积分的说明 10222846
捐赠科研通 3040559
什么是DOI,文献DOI怎么找? 1668897
邀请新用户注册赠送积分活动 798857
科研通“疑难数据库(出版商)”最低求助积分说明 758612