已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prediction of the resilient modulus of compacted subgrade soils using ensemble machine learning methods

路基 集成学习 随机森林 机器学习 集合预报 线性回归 含水量 岩土工程 环境科学 计算机科学 工程类
作者
Navid Kardani,Mohammad Aminpour,Muhammad Nouman Amjad Raja,Gaurav Kumar,Abidhan Bardhan,Majidreza Nazem
出处
期刊:Transportation geotechnics [Elsevier]
卷期号:36: 100827-100827 被引量:81
标识
DOI:10.1016/j.trgeo.2022.100827
摘要

The accurate estimation of resilient modulus (MR) of compacted subgrade soil is imperative for the safe and sustainable design of flexible pavement systems. The aim of this study is to explore the potential of ensemble machine learning techniques for predicting the MR of pavement subgrade soil. For this, 2813 data points from twelve compacted subgrade soils were collected which consists of the following inputs parameters: dry unit weight, weighted plasticity index, deviator stress, confining stress, number of freeze–thaw cycles, and moisture content. Four commonly used machine learning (ML) methods, namely, gradient boosting regression (GBR), decision tree regression (DTR), K nearest neighbour regression (KNR), and random forest regression (RFR) were developed and implemented for forecasting the MR value. Thereafter, several ensemble ML techniques including voting ensemble (VO-ENSM), voting ensemble with RF as a meta-model (VO-ENSM (RF)), stacking ensemble (ST-ENSM) and bagging ensemble (BG-ENSM) were utilised to amalgamate the outputs from the developed standalone ML models. Additionally, a multiple linear regression model was also developed as a baseline. The predictive veracity, reliability and trustworthiness of the developed ensemble models were corroborated using rigorous statistical testing, ranking technique, and uncertainty analysis. The results as obtained have shown that the BG-ENSM outperformed its counterparts in predicting the MR of subgrade soil. Hence, it can be a part of portfolio of predicting tools utilised by the practitioners in evaluating the strength of the pavement subgrade soil. Finally, the sensitivity analysis was performed to assess the strength of input variables on the MR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
打打应助xiaoxiao采纳,获得10
4秒前
大大彬发布了新的文献求助10
5秒前
Zhujinjin0120发布了新的文献求助20
6秒前
无问西东完成签到 ,获得积分10
6秒前
6秒前
7秒前
青原完成签到 ,获得积分10
7秒前
共享精神应助ceeray23采纳,获得20
8秒前
爆米花应助曹能豪采纳,获得10
10秒前
10秒前
YDX完成签到 ,获得积分10
11秒前
11秒前
橘桃发布了新的文献求助10
11秒前
shy发布了新的文献求助10
12秒前
13秒前
13秒前
hhh完成签到 ,获得积分10
14秒前
田様应助红萌馆管家采纳,获得10
15秒前
15秒前
Kototo发布了新的文献求助10
16秒前
17秒前
18秒前
青原发布了新的文献求助10
18秒前
wy.he应助忐忐忑忑涛采纳,获得30
20秒前
xiaoxiao发布了新的文献求助10
20秒前
光亮书本完成签到 ,获得积分10
20秒前
21秒前
22秒前
22秒前
LALA发布了新的文献求助30
22秒前
23秒前
CodeCraft应助9320采纳,获得10
24秒前
上官若男应助风清扬采纳,获得10
24秒前
郑dh发布了新的文献求助10
24秒前
cchh完成签到,获得积分10
25秒前
羽幻一惜发布了新的文献求助10
27秒前
27秒前
核桃发布了新的文献求助10
29秒前
你想吃柿饼吗完成签到,获得积分10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Treatise on Geochemistry 1500
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5515229
求助须知:如何正确求助?哪些是违规求助? 4608772
关于积分的说明 14513081
捐赠科研通 4545068
什么是DOI,文献DOI怎么找? 2490383
邀请新用户注册赠送积分活动 1472349
关于科研通互助平台的介绍 1444058