Data‐driven modeling for predicting tribo‐performance of graphene‐incorporated glass‐fabric reinforced epoxy composites using machine learning algorithms

材料科学 摩擦学 复合材料 环氧树脂 极限抗拉强度 石墨烯 人工神经网络 万能试验机 随机森林 算法 机器学习 拉伸试验 人工智能 计算机科学 纳米技术
作者
Santosh Kumar,K. Sourabh K. Singh,Kalyan Kumar Singh
出处
期刊:Polymer Composites [Wiley]
卷期号:43 (9): 6599-6610 被引量:30
标识
DOI:10.1002/pc.26974
摘要

Abstract The present article aims to investigate a comparative effect of the mechanical properties and tribological operating variables (applied load and sliding distance) on the tribo‐performance of graphene incorporated woven glass fabric reinforced epoxy (GFRE) composites. Computational and data‐driven machine learning (ML) approach has been extensively applied to examine the advancement of the tribological systems. For the study, tribo‐mechanical data, gathered from previous investigations by the present authors, have been used as well. Accordingly, a predictive model, based on the ML algorithms for predicting specific wear rates (SWR), has been developed. Further, a co‐relation between the SWR and the mechanical properties of materials has been determined. For the investigation process, three ML approaches, have been applied, viz., artificial neural network (ANN), Random Forest (RF), and Gradient Boosting Machine (GBM). Feature score analysis has been done as well revealing that variation of the sliding distance, interlaminar shear strength (ILSS) and product of tensile strength (s) and elongation (e) significantly influence the SWR prediction. The trained ML models can predict the tribo‐performance from mechanical properties variables and tribological test conditions, which is impossible with conventional two‐parameter correlations. During the present study, the coefficient of determination ( R 2 value) in different models was found to be 0.9883, 0.9884, and 0.9762 for the ANN, RF, and GBM, respectively. The best‐performing model was RF.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助内向冰绿采纳,获得10
2秒前
2秒前
3秒前
3秒前
3秒前
共享精神应助激昂的夏槐采纳,获得10
3秒前
4秒前
5秒前
5秒前
5秒前
灵巧鑫发布了新的文献求助10
6秒前
6秒前
共享精神应助yuyuyuyu采纳,获得30
6秒前
西粤学发布了新的文献求助20
7秒前
8秒前
kulo发布了新的文献求助10
9秒前
Sugarm发布了新的文献求助10
10秒前
神勇的罡发布了新的文献求助10
10秒前
10秒前
共享精神应助玉襄采纳,获得10
12秒前
出门见喜发布了新的文献求助10
12秒前
12秒前
酷波er应助Yanning采纳,获得10
13秒前
聂亦发布了新的文献求助10
13秒前
13秒前
华仔应助亦L采纳,获得10
13秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
大模型应助Han采纳,获得10
16秒前
勤劳幻竹发布了新的文献求助10
17秒前
17秒前
林子发布了新的文献求助10
17秒前
18秒前
19秒前
传奇3应助西粤学采纳,获得10
19秒前
万能图书馆应助出门见喜采纳,获得10
20秒前
华仔应助科研通管家采纳,获得10
20秒前
传奇3应助科研通管家采纳,获得30
20秒前
20秒前
澜聴应助科研通管家采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5533094
求助须知:如何正确求助?哪些是违规求助? 4621559
关于积分的说明 14578975
捐赠科研通 4561617
什么是DOI,文献DOI怎么找? 2499392
邀请新用户注册赠送积分活动 1479257
关于科研通互助平台的介绍 1450500