Attraction Recommendation Based on Tourism Context Modeling and Multi‐neural Collaborative Filtering Algorithm

旅游 接见者模式 计算机科学 背景(考古学) 协同过滤 特征(语言学) 人工神经网络 代表(政治) 推荐系统 人工智能 地理 机器学习 数据科学 数据挖掘 考古 政治 政治学 法学 程序设计语言 语言学 哲学
作者
Shuo Zhang,Lei Wang,Rong Fei,Xiangrong Xu,Wei Li
出处
期刊:Ieej Transactions on Electrical and Electronic Engineering [Wiley]
卷期号:18 (8): 1280-1295 被引量:4
标识
DOI:10.1002/tee.23847
摘要

The key to generating tailored suggestions in the scenic location recommendation scene is how to model the diverse tourism environments in order to correctly acquire visitor preferences and scenic spot tourism features. However, most existing recommendation algorithms focus on the spatiotemporal background modeling of historical tourism trajectories. Only tourists' preferences are understood, and the rich heterogeneous tourism information such as tourists' personal tourism constraints and scenic spots' tourism attributes are ignored. In this paper, we proposed a multiple neural collaborative filtering attraction recommendation architecture (MNCF‐AR). To begin, we learn the tourism feature representation of tourists by modeling diverse tourism contexts, and then we create the tourism trajectory background of tourists using a large number of actual tourism logs to achieve the entire feature representation of tourists. Second, to learn the feature vector of scenic spots in the context, the tourism heterogeneous network map is used to build the scenic spot attribute background, the self‐attention network to learn the scenic spot sequence learning, and a neural network to project each scenic spot into a unified potential feature space. Finally, the multi‐neural collaborative filtering method is utilized to forecast the difference in scores between visitors and scenic sites so that tailored scenic spots may be recommended. Extensive experiments on mainstream datasets, such as MaFengwo, New York, Tokyo and Xi'an, show that the proposed method can effectively and accurately recommend attractions for users. © 2023 Institute of Electrical Engineer of Japan and Wiley Periodicals LLC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yaya完成签到,获得积分10
1秒前
科研通AI5应助yy采纳,获得10
2秒前
研友_nPKbNL完成签到,获得积分10
3秒前
咖啡发布了新的文献求助10
3秒前
kryptonite完成签到 ,获得积分10
5秒前
6秒前
7秒前
积极的绫完成签到 ,获得积分20
7秒前
脑洞疼应助Tzzl0226采纳,获得10
8秒前
牙瓜完成签到 ,获得积分10
8秒前
hHHhHg完成签到,获得积分20
10秒前
花啊拾肆发布了新的文献求助10
10秒前
元元发布了新的文献求助20
13秒前
筱噺完成签到,获得积分10
14秒前
14秒前
大个应助Harley采纳,获得10
15秒前
15秒前
17秒前
花啊拾肆完成签到,获得积分10
18秒前
天想月完成签到,获得积分10
18秒前
hzhang0807发布了新的文献求助10
19秒前
李健应助壮观寒荷采纳,获得10
20秒前
Nowind完成签到,获得积分10
20秒前
HEIKU应助yyx采纳,获得10
20秒前
爆米花应助静好采纳,获得10
22秒前
22秒前
huiseXT完成签到,获得积分10
24秒前
24秒前
文静的夜澄完成签到,获得积分20
26秒前
Tzzl0226发布了新的文献求助10
27秒前
pan完成签到,获得积分10
28秒前
王sir完成签到,获得积分10
33秒前
复杂的兔子完成签到,获得积分10
33秒前
35秒前
阿呷惹完成签到 ,获得积分10
36秒前
40秒前
袁震的爹爹完成签到,获得积分10
40秒前
热心晓丝发布了新的文献求助10
40秒前
40秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
System of systems: When services and products become indistinguishable 300
How to carry out the process of manufacturing servitization: A case study of the red collar group 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3812639
求助须知:如何正确求助?哪些是违规求助? 3357159
关于积分的说明 10385273
捐赠科研通 3074338
什么是DOI,文献DOI怎么找? 1688722
邀请新用户注册赠送积分活动 812320
科研通“疑难数据库(出版商)”最低求助积分说明 766986