已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Track Defect Detection Based on Improved YOLOv5s

计算机科学 磁道(磁盘驱动器) 操作系统
作者
Qinjun Zhao,Sixian Fang,Yueyang Li,Hongyan Shang,Han Zhang,Tao Shen
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-10 被引量:2
标识
DOI:10.1109/tii.2024.3523593
摘要

Track defect detection is crucial for ensuring train operation safety and maintaining railway infrastructure integrity. To address the problems of missed detection, inaccurate positioning, and insufficient ability to detect small-scale objects in traditional track defect detection, a track defect detection network (DSO-YOLO) based on improved YOLOv5s is proposed. This method employs a decoupling head and a small-object detection layer due to the YOLOv5s, and adopts the full-dimensional dynamic convolution module ODConv to improve object detection performance. First, the original coupled header is replaced by a decoupled one and the generalizability of Yolov5s is improved by a learning process that separates the target position and classification data. Second, the new small target detection layer expands the feature mapping from three groups to four groups; a better multiscale detection mechanism is introduced to handle targets of different sizes. Finally, ODConv is introduced into the neck structure of YOLOv5s, and a 4-D attention mechanism is adopted to accurately locate the track defect feature regions and refine the local fine-grained features for solving the problem of illumination influence as well as the overlap of defect regions. The experimental consequents show that the mean average precision of the improved model is 98.6%, surpassing YOLOv5s by 3.7%. The suggested model demonstrates higher accuracy in detecting various track defects within complex environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Ariesir应助莉吖采纳,获得100
1秒前
2213sss发布了新的文献求助10
2秒前
3秒前
5秒前
华仔应助认真奇异果采纳,获得10
7秒前
greenandblue发布了新的文献求助10
9秒前
风中的德天完成签到,获得积分20
9秒前
随便起个名完成签到 ,获得积分10
9秒前
十一发布了新的文献求助10
10秒前
lars完成签到,获得积分10
14秒前
魔幻蓉完成签到 ,获得积分10
14秒前
LaTeXer应助浮浮世世采纳,获得50
14秒前
浮游应助云里采纳,获得10
15秒前
KiraShaw完成签到,获得积分10
16秒前
科研通AI5应助kndfsfmf采纳,获得10
17秒前
雪白溪流完成签到 ,获得积分10
18秒前
18秒前
20秒前
在水一方应助科研通管家采纳,获得10
20秒前
xzy998应助科研通管家采纳,获得10
20秒前
打打应助科研通管家采纳,获得10
20秒前
HJJHJH应助科研通管家采纳,获得20
20秒前
科目三应助科研通管家采纳,获得10
20秒前
CodeCraft应助科研通管家采纳,获得10
20秒前
orixero应助科研通管家采纳,获得10
20秒前
斯文败类应助科研通管家采纳,获得10
20秒前
Isabella完成签到,获得积分10
20秒前
Akim应助科研通管家采纳,获得10
20秒前
20秒前
BAEKHYUNLUCKY完成签到,获得积分10
21秒前
pinecone发布了新的文献求助10
22秒前
郑1完成签到,获得积分10
24秒前
明理万天发布了新的文献求助10
27秒前
趣多多发布了新的文献求助10
28秒前
流光完成签到,获得积分10
30秒前
30秒前
34秒前
秋风之墩发布了新的文献求助10
34秒前
jingran127关注了科研通微信公众号
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4727616
求助须知:如何正确求助?哪些是违规求助? 4084175
关于积分的说明 12631951
捐赠科研通 3790908
什么是DOI,文献DOI怎么找? 2093516
邀请新用户注册赠送积分活动 1119352
科研通“疑难数据库(出版商)”最低求助积分说明 995544