Machine learning prediction of glaucoma by heavy metal exposure: results from the National Health and Nutrition Examination Survey 2005 to 2008

全国健康与营养检查调查 青光眼 环境卫生 计算机科学 医学 人工智能 眼科 人口
作者
Xinchen Wang,Gang Chen,Rui He,Yuting Gao,Jingwen Lu,Tongcheng Xu,Heting Liu,Zhengxuan Jiang
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:15 (1)
标识
DOI:10.1038/s41598-025-88698-7
摘要

Using follow-up data from the National Health and Nutrition Examination Survey (NHANES) database, we have collected information on 2572 subjects and used generalized linear model to investigate the association between urinary heavy metal levels and glaucoma risk. In addition, we have developed an individualized risk prediction model using machine learning algorithms and further interpreted the model results through feature importance analysis, local cumulative analysis, and interaction effects. In this study, we found significant association between logarithmically calculated arsenic (As) metabolites, especially arsenochlorine (AC), and glaucoma after adjusting for a series of confounders, including urinary creatinine (β = 1.090, 95% CI: 0.313–1.835). The Shapley Additive Explanations (SHAP) analysis results and clinical risk scores also indicated that As metabolites promoted glaucoma more severely than other variables. This study applied machine learning for the first time to explore the relationship between heavy metals and glaucoma while analyzing the effects of multiple heavy metal exposures on the disease, improving the predictive power compared to conventional models. Our results provided important insights into the potential role of heavy metals in the pathogenesis of glaucoma, facilitated the discovery of new biomarkers for early diagnosis, risk assessment, and timely treatment of glaucoma, and guided public health measures to reduce heavy metal exposure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wss123456发布了新的文献求助10
刚刚
wss123456完成签到,获得积分20
8秒前
16秒前
19秒前
在水一方应助科研通管家采纳,获得10
19秒前
pluto应助科研通管家采纳,获得50
19秒前
19秒前
FashionBoy应助科研通管家采纳,获得10
19秒前
科目三应助科研通管家采纳,获得10
20秒前
汉堡包应助科研通管家采纳,获得10
20秒前
Steven发布了新的文献求助10
21秒前
24秒前
24秒前
乐乐应助阔达衬衫采纳,获得10
26秒前
28秒前
小高同学发布了新的文献求助10
28秒前
昏睡的蟠桃给TrinhTran2001的求助进行了留言
28秒前
科研小民工应助黄小北采纳,获得200
29秒前
CodeCraft应助dff采纳,获得10
32秒前
温暖书文应助nemo采纳,获得10
35秒前
踏实采波完成签到,获得积分10
35秒前
锦秋发布了新的文献求助30
35秒前
dff完成签到,获得积分10
38秒前
谷安完成签到,获得积分10
40秒前
Friday发布了新的文献求助10
40秒前
Owen应助Li采纳,获得10
41秒前
42秒前
hanliulaixi发布了新的文献求助10
42秒前
bkagyin应助小高同学采纳,获得10
46秒前
无奈鞯完成签到,获得积分20
47秒前
bkagyin应助清茶韵心采纳,获得10
48秒前
Friday完成签到,获得积分20
48秒前
pluto应助科研小破白菜采纳,获得20
52秒前
北方完成签到,获得积分10
52秒前
52秒前
53秒前
轻松凝梦发布了新的文献求助10
55秒前
默默雨竹发布了新的文献求助10
56秒前
科研通AI2S应助kukudou2采纳,获得10
59秒前
大模型应助默默小鸽子采纳,获得10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778573
求助须知:如何正确求助?哪些是违规求助? 3324177
关于积分的说明 10217311
捐赠科研通 3039383
什么是DOI,文献DOI怎么找? 1668032
邀请新用户注册赠送积分活动 798482
科研通“疑难数据库(出版商)”最低求助积分说明 758385