Deep learning model for automated diagnosis of moyamoya disease based on magnetic resonance angiography

医学 烟雾病 磁共振成像 放射科 磁共振血管造影 血管造影
作者
Mingming Lu,Yijia Zheng,Shitong Liu,Xiaolan Zhang,Jiahui Lv,Yuan Liu,Baobao Li,Fei Yuan,Peng Peng,Cong Han,Chune Ma,Chao Zheng,Hongtao Zhang,Jianming Cai
出处
期刊:EClinicalMedicine [Elsevier BV]
卷期号:77: 102888-102888
标识
DOI:10.1016/j.eclinm.2024.102888
摘要

SummaryBackgroundThis study explores the potential of the deep learning-based convolutional neural network (CNN) to automatically recognize MMD using MRA images from atherosclerotic disease (ASD) and normal control (NC).MethodsIn this retrospective study in China, 600 participants (200 MMD, 200 ASD and 200 NC) were collected from one institution as an internal dataset for training and 60 from another institution were collected as external testing set for validation. All participants were divided into training (N = 450) and validation sets (N = 90), internal testing set (N = 60), and external testing set (N = 60). The input to the CNN models comprised preprocessed MRA images, while the output was a tripartite classification label that identified the patient's diagnostic group. The performances of 3D CNN models were evaluated using a comprehensive set of metrics such as area under the curve (AUC) and accuracy. Gradient-weighted Class Activation Mapping (Grad-CAM) was used to visualize the CNN's decision-making process in MMD diagnosis by highlighting key areas. Finally, the diagnostic performances of the CNN models were compared with those of two experienced radiologists.FindingsDenseNet-121 exhibited superior discrimination capabilities, achieving a macro-average AUC of 0.977 (95% CI, 0.928–0.995) in the internal test sets and 0.880 (95% CI, 0.786–0.937) in the external validation sets, thus exhibiting comparable diagnostic capabilities to those of human radiologists. In the binary classification where ASD and NC were group together, with MMD as the separate group for targeted detection, DenseNet-121 achieved an accuracy of 0.967 (95% CI, 0.886–0.991). Additionally, the Grad-CAM results for the MMD, with areas of intense redness indicating critical areas identified by the model, reflected decision-making similar to human experts.InterpretationThis study highlights the efficacy of CNN model in the automated diagnosis of MMD on MRA images, easing the workload on radiologists and promising integration into clinical workflows.FundingNational Natural Science Foundation of China, Tianjin Science and Technology Project and Beijing Natural Science Foundation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gyx完成签到 ,获得积分10
2秒前
小水完成签到 ,获得积分10
3秒前
逆流的鱼完成签到 ,获得积分10
4秒前
陈陈完成签到 ,获得积分10
6秒前
8秒前
汉堡包应助科研通管家采纳,获得10
10秒前
CipherSage应助科研通管家采纳,获得10
10秒前
CipherSage应助科研通管家采纳,获得10
10秒前
10秒前
gdgd完成签到,获得积分10
18秒前
吃小孩的妖怪完成签到 ,获得积分10
19秒前
luoyukejing完成签到,获得积分10
20秒前
1461完成签到 ,获得积分10
22秒前
蓝胖子完成签到 ,获得积分10
26秒前
木南完成签到 ,获得积分10
27秒前
HY完成签到 ,获得积分10
28秒前
qaplay完成签到 ,获得积分0
33秒前
我要读博士完成签到 ,获得积分10
40秒前
优雅的雁凡完成签到,获得积分10
40秒前
yhnsag完成签到,获得积分10
44秒前
47秒前
Zoe完成签到,获得积分10
53秒前
优雅的千雁完成签到,获得积分10
58秒前
拉长的诗蕊完成签到,获得积分10
59秒前
mayberichard完成签到,获得积分10
1分钟前
lilylwy完成签到 ,获得积分0
1分钟前
小蘑菇应助bckl888采纳,获得10
1分钟前
1分钟前
heyan完成签到,获得积分10
1分钟前
1分钟前
愉悦完成签到,获得积分10
1分钟前
1分钟前
淮之滨完成签到 ,获得积分10
1分钟前
百谷昙发布了新的文献求助10
1分钟前
CyberHamster完成签到,获得积分10
1分钟前
俊逸吐司完成签到 ,获得积分10
1分钟前
核桃发布了新的文献求助10
1分钟前
成就的孤晴完成签到 ,获得积分10
1分钟前
铜豌豆完成签到 ,获得积分10
1分钟前
高大以南完成签到,获得积分10
1分钟前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Effect of deresuscitation management vs. usual care on ventilator-free days in patients with abdominal septic shock 200
Erectile dysfunction From bench to bedside 200
Advanced Introduction to Behavioral Law and Economics 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825056
求助须知:如何正确求助?哪些是违规求助? 3367362
关于积分的说明 10445316
捐赠科研通 3086752
什么是DOI,文献DOI怎么找? 1698245
邀请新用户注册赠送积分活动 816657
科研通“疑难数据库(出版商)”最低求助积分说明 769911