亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Bio-Inspired Visual Network That Fuses Motion and Contrast Features for Detecting Small Moving Objects in Dynamic Complex Environments

计算机科学 计算机视觉 人工智能 对比度(视觉)
作者
Jun Ling,Hecheng Meng,Dohoon Gong
出处
期刊:Applied sciences [Multidisciplinary Digital Publishing Institute]
卷期号:15 (3): 1649-1649
标识
DOI:10.3390/app15031649
摘要

In complex and dynamic environments, traditional motion detection techniques that rely on visual feature extraction face significant challenges when detecting and tracking small-sized moving objects. These difficulties primarily stem from the limited feature information inherent in small objects and the substantial interference caused by irrelevant information in complex backgrounds. Inspired by the intricate mechanisms for detecting small moving objects in insect brains, some bio-inspired systems have been designed to identify small moving objects in dynamic natural backgrounds. While these insect-inspired systems can effectively utilize motion information for object detection, they still suffer from limitations in suppressing complex background interference and accurately segmenting small objects, leading to a high rate of false positives from the complex background in their detection results. To overcome this limitation, inspired by insect visual neural structures, we propose a novel dual-channel visual network. The network first utilizes a motion detection channel to extract the target’s motion position information and track its trajectory. Simultaneously, a contrast detection channel extracts the target’s local contrast information. Then, based on the target’s motion trajectory, we determine the temporal variation trajectory of the target’s contrast. Finally, by comparing the temporal fluctuation characteristics of the contrast between the target and background false positives, the network can effectively distinguish between the target and background, thereby suppressing false positives. The experimental results show that the visual network performs excellently in terms of detection rate and precision, with an average detection rate of 0.81 and an average precision as high as 0.0968, which are significantly better than those of other comparative methods. This indicates that it has a significant advantage in suppressing false alarms and identifying small targets in complex dynamic environments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12秒前
星空完成签到,获得积分10
15秒前
英姑应助星空采纳,获得10
22秒前
32秒前
shinn发布了新的文献求助10
37秒前
喜悦的小土豆完成签到 ,获得积分10
1分钟前
oleskarabach发布了新的文献求助10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
所所应助科研通管家采纳,获得10
1分钟前
所所应助科研通管家采纳,获得10
1分钟前
jyy应助科研通管家采纳,获得10
1分钟前
1分钟前
Jj7完成签到,获得积分10
1分钟前
Kevin完成签到 ,获得积分10
2分钟前
xh发布了新的文献求助10
2分钟前
2分钟前
zhengzheng发布了新的文献求助30
2分钟前
xh完成签到,获得积分10
2分钟前
2分钟前
魁梧的败发布了新的文献求助10
2分钟前
花陵完成签到 ,获得积分10
2分钟前
3分钟前
cdercder应助科研通管家采纳,获得10
3分钟前
3分钟前
seabrook发布了新的文献求助10
4分钟前
没烦恼发布了新的文献求助10
4分钟前
4分钟前
Nauyt完成签到,获得积分10
4分钟前
shea发布了新的文献求助10
4分钟前
Hello应助没烦恼采纳,获得10
4分钟前
大个应助shea采纳,获得10
4分钟前
4分钟前
小乐发布了新的文献求助10
4分钟前
Mercurymons完成签到,获得积分10
4分钟前
4分钟前
hairgod完成签到,获得积分10
4分钟前
务实水蓝完成签到 ,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
The Martian climate revisited: atmosphere and environment of a desert planet 500
Plasmonics 400
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Towards a spatial history of contemporary art in China 400
Ecology, Socialism and the Mastery of Nature: A Reply to Reiner Grundmann 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3847654
求助须知:如何正确求助?哪些是违规求助? 3390328
关于积分的说明 10561470
捐赠科研通 3110665
什么是DOI,文献DOI怎么找? 1714465
邀请新用户注册赠送积分活动 825242
科研通“疑难数据库(出版商)”最低求助积分说明 775421