Promoting in-situ stability of hydroxide exchange membranes by thermally conductive network for durable water electrolysis

氢氧化物 电解 导电体 原位 电解水 化学工程 材料科学 化学 电极 复合材料 工程类 有机化学 电解质 生物化学 物理化学
作者
Wei Wang,Ruixiang Guo,Aodi Zheng,Xiaorui Jin,Xiongjie Jia,Zhiwei Ren,Yangkai Han,Lifeng Zhang,Yeming Zhai,Xiaofen Liu,Haoran Jiang,Yun Zhao,Kai‐Ge Zhou,Meiling Wu,Zhongyi Jiang
出处
期刊:Nature Communications [Nature Portfolio]
卷期号:16 (1)
标识
DOI:10.1038/s41467-025-56262-6
摘要

Hydroxide exchange membrane (HEM) water electrolysis is promising for green hydrogen production due to its low cost and excellent performance. However, HEM often has insufficient stability in strong alkaline solutions, particularly under in-situ electrolysis operation conditions, hindering its commercialization. In this study, we discover that the in-situ stability of HEM is primarily impaired by the locally accumulated heat in HEM due to its low thermal conductivity. Accordingly, we propose highly thermally conductive HEMs with an efficient three-dimensional (3D) thermal diffusion network to promote the in-situ stability of HEM for water electrolysis. Based on the 3D heat conductive network, the thermal conductivity of polymeric HEM is boosted by 32 times and thereby reduce the HEM temperature by up to 4.9 °C in a water electrolyzer at the current density of 1 A cm−2. Thus, the thermally conductive HEM exhibits negligible degradation after 20,000 start/stop cycles and reduces the degradation rate by 6 times compared to the pure polymeric HEM in a water electrolyzer. This study manifests the significance of thermal conductivity of HEM on the durability of water electrolysis, which provides guidelines on the rational design of highly durable HEMs in practical operation conditions for water electrolysis, fuel cells, and beyond. Hydroxide exchange membranes are desirable for water electrolysis but are limited by their instability under operational conditions. Here, authors find that the in-situ stability of the membranes is affected by the locally accumulated heat and can be enhanced by thermally conductive membranes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
momo发布了新的文献求助10
刚刚
刚刚
Jasper应助六沉采纳,获得10
2秒前
AhhHuang应助momo采纳,获得10
4秒前
zzx完成签到,获得积分10
4秒前
SYLH应助momo采纳,获得10
4秒前
科研小白发布了新的文献求助10
4秒前
海城好人完成签到,获得积分10
5秒前
平常的毛豆应助洪焕良采纳,获得10
5秒前
豆子发布了新的文献求助10
5秒前
7秒前
学渣小林完成签到,获得积分10
7秒前
领导范儿应助科研通管家采纳,获得10
9秒前
Ava应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得30
9秒前
田様应助科研通管家采纳,获得10
9秒前
大模型应助科研通管家采纳,获得10
9秒前
领导范儿应助科研通管家采纳,获得10
9秒前
Singularity应助科研通管家采纳,获得10
9秒前
隐形曼青应助科研通管家采纳,获得10
9秒前
桐桐应助科研通管家采纳,获得10
10秒前
非而者厚应助科研通管家采纳,获得10
10秒前
Alex应助科研通管家采纳,获得20
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
10秒前
打打应助WQ采纳,获得10
11秒前
11秒前
13秒前
英俊的铭应助pp采纳,获得10
14秒前
所所应助lijunying采纳,获得30
14秒前
15秒前
15秒前
科研小白完成签到,获得积分10
16秒前
芋倪啵啵发布了新的文献求助10
17秒前
18秒前
晴天关注了科研通微信公众号
18秒前
18秒前
zc发布了新的文献求助20
19秒前
lilin完成签到,获得积分10
20秒前
令狐小仙发布了新的文献求助10
20秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816877
求助须知:如何正确求助?哪些是违规求助? 3360272
关于积分的说明 10407488
捐赠科研通 3078282
什么是DOI,文献DOI怎么找? 1690682
邀请新用户注册赠送积分活动 813990
科研通“疑难数据库(出版商)”最低求助积分说明 767958