Learning produces an orthogonalized state machine in the hippocampus

认知地图 神经科学 推论 人口 生成模型 认知 人工神经网络 计算机科学 机器学习 人工智能 生成语法 心理学 人口学 社会学
作者
Weinan Sun,Johan Winnubst,Maanasa Natrajan,Chongxi Lai,Koichiro Kajikawa,Arco Bast,Michalis Michaelos,Rachel Gattoni,Carsen Stringer,Daniel Flickinger,James E. Fitzgerald,Nelson Spruston
出处
期刊:Nature [Nature Portfolio]
被引量:1
标识
DOI:10.1038/s41586-024-08548-w
摘要

Abstract Cognitive maps confer animals with flexible intelligence by representing spatial, temporal and abstract relationships that can be used to shape thought, planning and behaviour. Cognitive maps have been observed in the hippocampus 1 , but their algorithmic form and learning mechanisms remain obscure. Here we used large-scale, longitudinal two-photon calcium imaging to record activity from thousands of neurons in the CA1 region of the hippocampus while mice learned to efficiently collect rewards from two subtly different linear tracks in virtual reality. Throughout learning, both animal behaviour and hippocampal neural activity progressed through multiple stages, gradually revealing improved task representation that mirrored improved behavioural efficiency. The learning process involved progressive decorrelations in initially similar hippocampal neural activity within and across tracks, ultimately resulting in orthogonalized representations resembling a state machine capturing the inherent structure of the task. This decorrelation process was driven by individual neurons acquiring task-state-specific responses (that is, ‘state cells’). Although various standard artificial neural networks did not naturally capture these dynamics, the clone-structured causal graph, a hidden Markov model variant, uniquely reproduced both the final orthogonalized states and the learning trajectory seen in animals. The observed cellular and population dynamics constrain the mechanisms underlying cognitive map formation in the hippocampus, pointing to hidden state inference as a fundamental computational principle, with implications for both biological and artificial intelligence.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
bc应助科研通管家采纳,获得30
刚刚
bc应助科研通管家采纳,获得30
1秒前
冰魂应助科研通管家采纳,获得10
1秒前
华仔应助科研通管家采纳,获得10
1秒前
bc应助科研通管家采纳,获得30
1秒前
4秒前
WSH发布了新的文献求助10
4秒前
6秒前
6秒前
刘123发布了新的文献求助10
8秒前
9秒前
黎小静发布了新的文献求助10
9秒前
毛毛妈发布了新的文献求助10
12秒前
斯文败类应助爱听歌笑寒采纳,获得10
12秒前
SciGPT应助毛不二采纳,获得10
13秒前
wanci应助核桃nut采纳,获得10
16秒前
16秒前
bkagyin应助SCI采纳,获得10
21秒前
21秒前
hh完成签到 ,获得积分10
25秒前
26秒前
zho应助毛毛妈采纳,获得10
26秒前
28秒前
端庄的小翠完成签到 ,获得积分10
30秒前
SCI发布了新的文献求助10
31秒前
33秒前
37秒前
37秒前
小边发布了新的文献求助10
42秒前
1107任务报告完成签到,获得积分10
44秒前
Charley发布了新的文献求助10
46秒前
xingxinghan完成签到 ,获得积分10
46秒前
传奇3应助小丸子采纳,获得10
49秒前
HHTTY完成签到 ,获得积分10
54秒前
56秒前
56秒前
56秒前
58秒前
苏苏完成签到,获得积分20
58秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778595
求助须知:如何正确求助?哪些是违规求助? 3324214
关于积分的说明 10217326
捐赠科研通 3039397
什么是DOI,文献DOI怎么找? 1668059
邀请新用户注册赠送积分活动 798482
科研通“疑难数据库(出版商)”最低求助积分说明 758385