Design of an Efficient Multimodal Deep Learning Framework for Assessing Mental Workload Using Eye Tracking and Physiological Parameters

工作量 眼动 计算机科学 跟踪(教育) 人工智能 人机交互 深度学习 心理学 操作系统 教育学
作者
R. Vijay Anand,P. Jayalakshmi,I. Alagiri,Madala Guru Brahmam,Balamurugan Balusamy,Veena Grover
出处
期刊:Chapman and Hall/CRC eBooks [Informa]
卷期号:: 73-95
标识
DOI:10.1201/9781032625829-5
摘要

An important predictor of human cognitive and physical performance, it is necessary to precisely and efficiently measure mental workload for applications ranging from individualized health care to productivity enhancement. Present methods rely mainly, and separately, on physiological measurements or eye-tracking data, critically limiting the precision with which mental workload can be accurately assessed across levels of memory, response time, and precision. The present findings point to the need for an integrated, multimodal strategy to surmount these limitations, and significantly improve mental workload estimation accuracy. As a result, here we propose a novel multimodal deep learning architecture that effectively incorporates eye-tracking and physiological data. Apart from complex information related to fixation time, saccade velocity, and averaged pupil diameter from eye movement data, our methodology captures a range of physiological signals, such as ECG readings, glucose fluctuations, and blood pressure changes. An accurate assessment of mental demands is then made by fusing data from multiple sources using ensemble learning and an efficient 1D Convolutional Neural Network (1D CNN) classifier. The proposed model outperformed previous techniques with 2.9%, 3.5%, and 3.4% increases in precision, accuracy, and recall, respectively. The fact that the methodology also demonstrated a 2.5% drop in latency levels further reinforced the promise of a faster implementation of the approach for a more responsive, real-time mental workload estimation technique. The current study establishes the groundbreaking potential of our multimodal approach in providing a thorough and accurate assessment of mental burdens, thereby opening up important applications in a wide variety of domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
1秒前
田様应助老实的水蜜桃采纳,获得10
1秒前
张先伟完成签到,获得积分10
2秒前
2秒前
3秒前
4秒前
24发布了新的文献求助10
5秒前
搜集达人应助生动友容采纳,获得10
5秒前
红柚完成签到,获得积分10
5秒前
7秒前
999发布了新的文献求助10
8秒前
溜溜溜完成签到 ,获得积分10
9秒前
kst19901026发布了新的文献求助10
9秒前
所所应助长风采纳,获得10
12秒前
漂亮的秋天完成签到 ,获得积分10
12秒前
扯淡的小毛孩完成签到,获得积分10
13秒前
七七完成签到,获得积分10
13秒前
14秒前
wyh发布了新的文献求助10
14秒前
核桃发布了新的文献求助10
15秒前
珊珊完成签到,获得积分10
15秒前
yy030421发布了新的文献求助10
17秒前
19秒前
20秒前
21秒前
平淡的飞风关注了科研通微信公众号
22秒前
22秒前
CipherSage应助屠小意采纳,获得10
22秒前
mairs发布了新的文献求助20
22秒前
小蘑菇应助hh采纳,获得10
22秒前
999完成签到,获得积分10
22秒前
小二郎应助典雅的俊驰采纳,获得10
23秒前
25秒前
NexusExplorer应助kst19901026采纳,获得10
26秒前
王浩发布了新的文献求助10
26秒前
27秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 1000
中国兽药产业发展报告 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4438111
求助须知:如何正确求助?哪些是违规求助? 3911569
关于积分的说明 12148116
捐赠科研通 3558169
什么是DOI,文献DOI怎么找? 1953156
邀请新用户注册赠送积分活动 992988
科研通“疑难数据库(出版商)”最低求助积分说明 888508