High-resolution computed tomography diagnosis of pneumoconiosis complicated with pulmonary tuberculosis based on cascading deep supervision U-Net

尘肺病 医学 接收机工作特性 高分辨率计算机断层扫描 试验装置 肺结核 分割 放射科 计算机断层摄影术 人工智能 肺结核 计算机科学 内科学 病理
作者
Maoneng Hu,Zichen Wang,Xinxin Hu,Yi Wang,Guoliang Wang,Huanhuan Ding,Mingmin Bian
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:226: 107151-107151 被引量:6
标识
DOI:10.1016/j.cmpb.2022.107151
摘要

Pulmonary tuberculosis can promote pneumoconiosis deterioration, leading to higher mortality. This study aims to explore the diagnostic value of the cascading deep supervision U-Net (CSNet) model in pneumoconiosis complicated with pulmonary tuberculosis. A total of 162 patients with pneumoconiosis treated in our hospital were collected as the research objects. Patients were randomly divided into a training set (n = 113) and a test set (n = 49) in proportion (7:3). Based on the high-resolution computed tomography (HRCT), the traditional U-Net, supervision U-Net (SNet), and CSNet prediction models were constructed. Dice similarity coefficients, precision, recall, volumetric overlap error, and relative volume difference were used to evaluate the segmentation model. The area under the receiver operating characteristic curve (AUC) value represents the prediction efficiency of the model. There were no statistically significant differences in gender, age, number of positive patients, and dust contact time between patients in the training set and test set (P > 0.05). The segmentation results of CSNet are better than the traditional U-Net model and the SNet model. The AUC value of the CSNet model was 0.947 (95% CI: 0.900∼0.994), which was higher than the traditional U-Net model. The CSNet based on chest HRCT proposed in this study is superior to the traditional U-Net segmentation method in segmenting pneumoconiosis complicated with pulmonary tuberculosis. It has good prediction efficiency and can provide more clinical diagnostic value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
折花几慕发布了新的文献求助30
刚刚
刚刚
野性的沉鱼完成签到,获得积分20
1秒前
2秒前
蔡扬鹏发布了新的文献求助10
2秒前
初寒发布了新的文献求助10
3秒前
wqw完成签到,获得积分10
4秒前
石上叶子君应助风清扬采纳,获得50
4秒前
Jasper应助火锅采纳,获得10
4秒前
pu66发布了新的文献求助10
4秒前
6秒前
晓沫发布了新的文献求助10
7秒前
7秒前
丘比特应助LJM采纳,获得10
9秒前
9秒前
小二郎应助外卖到了采纳,获得10
9秒前
搜集达人应助77采纳,获得10
9秒前
古月博士完成签到,获得积分10
10秒前
黄小豆发布了新的文献求助10
11秒前
Syw关注了科研通微信公众号
11秒前
牛马完成签到 ,获得积分10
12秒前
殷勤的可兰完成签到,获得积分10
13秒前
勤劳的鸡发布了新的文献求助10
13秒前
13秒前
14秒前
lin完成签到,获得积分10
14秒前
15秒前
乌龟娟完成签到,获得积分10
15秒前
MrRen完成签到,获得积分10
15秒前
希望天下0贩的0应助汪汪采纳,获得10
16秒前
17秒前
jhy0803发布了新的文献求助10
18秒前
MrRen发布了新的文献求助10
18秒前
加绒完成签到,获得积分10
19秒前
21秒前
21秒前
Ava应助晓沫采纳,获得10
21秒前
zdy发布了新的文献求助50
21秒前
fu完成签到,获得积分10
22秒前
大模型应助万物更始采纳,获得10
22秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3964309
求助须知:如何正确求助?哪些是违规求助? 3510031
关于积分的说明 11150558
捐赠科研通 3243959
什么是DOI,文献DOI怎么找? 1792253
邀请新用户注册赠送积分活动 873681
科研通“疑难数据库(出版商)”最低求助积分说明 803884