Differential Diagnosis of Attention-Deficit/Hyperactivity Disorder and Bipolar Disorder using Steady-State Visual Evoked Potentials

视觉诱发电位 双相情感障碍 注意缺陷多动障碍 鉴别诊断 差速器(机械装置) 听力学 心理学 注意力缺陷 精神科 医学 物理 心情 病理 热力学
作者
Xiaoxia Li
出处
期刊:International Journal of Advanced Computer Science and Applications [Science and Information Organization]
卷期号:15 (5)
标识
DOI:10.14569/ijacsa.2024.01505110
摘要

Bipolar disorder and Attention-deficit/Hyperactivity disorder (ADHD) are two prevalent disorders whose symptoms are similar. In order to reduce the misdiagnosis between bipolar disorder and ADHD, a machine learning-based system using electroencephalography (EEG) and steady state potentials (i.e., steady-state visual evoked potential [SSVEP]) was evaluated to classify ADHD, bipolar disorder and normal conditions. Indeed, this research was conducted for the first time with the aim of designing a machine learning system for EEG detection of ADHD, bipolar disorder, and normal conditions using SSVEPs. For this purpose, both linear and nonlinear dynamics of extracted SSVEPs were analyzed. Indeed, after data preprocessing, spectral analysis and recurrence quantification analysis (RQA) were applied to SSVEPs. Then, feature selection was utilized through the DISR. Finally, we utilized various machine learning techniques to classify the linear and nonlinear features extracted from SSVEPs into three classes of ADHD, bipolar disorder and normal: k-nearest neighbors (KNN), support vector machine (SVM), linear discriminant analysis (LDA) and Naïve Bayes. Experimental results showed that SVM classifier with linear kernel yielded an accuracy of 78.57% for ADHD, bipolar disorder and normal classification through the leave-one-subject-out (LOSO) cross-validation. Although this research is the first to evaluate the utilization of signal processing and machine learning approaches in SSVEP classification of these disorders, it has limitations that future studies should investigate to enhance the efficacy of proposed system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助yiw采纳,获得10
刚刚
科研通AI5应助程雯慧采纳,获得10
刚刚
刚刚
刚刚
游游游完成签到,获得积分10
1秒前
奋斗机器猫完成签到 ,获得积分10
1秒前
所所应助君齐采纳,获得10
1秒前
赵培培发布了新的文献求助20
2秒前
zhangzikai发布了新的文献求助30
2秒前
2秒前
吴千雨完成签到,获得积分10
2秒前
科研通AI5应助aoyangxixi采纳,获得10
2秒前
动听锦程发布了新的文献求助30
2秒前
草莓奶冻发布了新的文献求助10
2秒前
lxiaok完成签到,获得积分10
3秒前
红叶发布了新的文献求助10
3秒前
丘比特应助000采纳,获得30
3秒前
冷静绿旋关注了科研通微信公众号
4秒前
凡仔发布了新的文献求助10
4秒前
4秒前
5秒前
hey喂狗发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
学术趴菜完成签到,获得积分10
6秒前
6秒前
7秒前
Uncle_J发布了新的文献求助10
7秒前
7秒前
金不换完成签到,获得积分10
8秒前
吴媛媛发布了新的文献求助10
8秒前
ayan发布了新的文献求助10
9秒前
9秒前
9秒前
葡萄成熟发布了新的文献求助10
9秒前
李昆朋完成签到,获得积分10
9秒前
Jasper应助Wangyn采纳,获得10
10秒前
lm完成签到,获得积分10
10秒前
化学天空完成签到,获得积分10
10秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
The Healthy Socialist Life in Maoist China, 1949–1980 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785297
求助须知:如何正确求助?哪些是违规求助? 3330886
关于积分的说明 10248776
捐赠科研通 3046307
什么是DOI,文献DOI怎么找? 1671979
邀请新用户注册赠送积分活动 800924
科研通“疑难数据库(出版商)”最低求助积分说明 759881