清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Unleashing the Power of Multi-Task Learning: A Comprehensive Survey Spanning Traditional, Deep, and Pretrained Foundation Model Eras

基础(证据) 任务(项目管理) 深度学习 功率(物理) 人工智能 计算机科学 工作队 数据科学 工程类 政治学 公共行政 地理 考古 系统工程 物理 量子力学
作者
Jun Yu,Yutong Dai,Xiaokang Liu,Jin Huang,Yishan Shen,Ke Zhang,Rong Zhou,Eashan Adhikarla,Wenxuan Ye,Yixin Liu,Zhaoming Kong,Kai Zhang,Yilong Yin,Vinod Namboodiri,Brian D. Davison,Jason H. Moore,Yong Chen
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2404.18961
摘要

MTL is a learning paradigm that effectively leverages both task-specific and shared information to address multiple related tasks simultaneously. In contrast to STL, MTL offers a suite of benefits that enhance both the training process and the inference efficiency. MTL's key advantages encompass streamlined model architecture, performance enhancement, and cross-domain generalizability. Over the past twenty years, MTL has become widely recognized as a flexible and effective approach in various fields, including CV, NLP, recommendation systems, disease prognosis and diagnosis, and robotics. This survey provides a comprehensive overview of the evolution of MTL, encompassing the technical aspects of cutting-edge methods from traditional approaches to deep learning and the latest trend of pretrained foundation models. Our survey methodically categorizes MTL techniques into five key areas: regularization, relationship learning, feature propagation, optimization, and pre-training. This categorization not only chronologically outlines the development of MTL but also dives into various specialized strategies within each category. Furthermore, the survey reveals how the MTL evolves from handling a fixed set of tasks to embracing a more flexible approach free from task or modality constraints. It explores the concepts of task-promptable and -agnostic training, along with the capacity for ZSL, which unleashes the untapped potential of this historically coveted learning paradigm. Overall, we hope this survey provides the research community with a comprehensive overview of the advancements in MTL from its inception in 1997 to the present in 2023. We address present challenges and look ahead to future possibilities, shedding light on the opportunities and potential avenues for MTL research in a broad manner. This project is publicly available at https://github.com/junfish/Awesome-Multitask-Learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
jiangqin123完成签到 ,获得积分10
6秒前
甄水瑶发布了新的文献求助30
7秒前
8秒前
肯德基没有黄焖鸡完成签到 ,获得积分10
15秒前
16秒前
21秒前
伏城完成签到 ,获得积分10
22秒前
30秒前
Akim应助甄水瑶采纳,获得10
32秒前
36秒前
36秒前
nanfang完成签到 ,获得积分10
37秒前
41秒前
46秒前
jlwang完成签到,获得积分10
47秒前
fox完成签到,获得积分10
50秒前
54秒前
Qvby3完成签到 ,获得积分10
59秒前
1分钟前
1分钟前
甄水瑶发布了新的文献求助10
1分钟前
souther完成签到,获得积分0
1分钟前
传奇3应助细心的语蓉采纳,获得10
1分钟前
一叶知秋应助科研通管家采纳,获得10
1分钟前
FashionBoy应助科研通管家采纳,获得10
1分钟前
一叶知秋应助科研通管家采纳,获得10
1分钟前
一叶知秋应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
fox发布了新的文献求助10
1分钟前
1分钟前
1分钟前
科研通AI5应助甄水瑶采纳,获得30
1分钟前
1分钟前
2分钟前
32429606完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 540
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
PBSM: Predictive Bi-Preference Stable Matching in Spatial Crowdsourcing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4118494
求助须知:如何正确求助?哪些是违规求助? 3657089
关于积分的说明 11577109
捐赠科研通 3359155
什么是DOI,文献DOI怎么找? 1845571
邀请新用户注册赠送积分活动 910827
科研通“疑难数据库(出版商)”最低求助积分说明 827082