细胞生物学
先天免疫系统
生物
免疫系统
上睑下垂
细胞
炎症
信号转导
免疫学
炎症体
遗传学
作者
Fei Wu,Huixun Du,Eliah Overbey,JangKeun Kim,Priya Makhijani,Nicholas G. Martin,Chad A. Lerner,Khiem Van Nguyen,Jordan J. Baechle,Taylor R. Valentino,Matías Fuentealba,Juliet M. Bartleson,Heather Halaweh,Shawn Winer,Cem Meydan,Francine E. Garrett-Bakelman,Nazish Sayed,Simon Melov,Masafumi Muratani,Akos A. Gerencser,Herbert G. Kasler,Afshin Beheshti,Christopher E. Mason,David Furman,Daniel A. Winer
标识
DOI:10.1038/s41467-023-42013-y
摘要
Abstract Microgravity is associated with immunological dysfunction, though the mechanisms are poorly understood. Here, using single-cell analysis of human peripheral blood mononuclear cells (PBMCs) exposed to short term (25 hours) simulated microgravity, we characterize altered genes and pathways at basal and stimulated states with a Toll-like Receptor-7/8 agonist. We validate single-cell analysis by RNA sequencing and super-resolution microscopy, and against data from the Inspiration-4 (I4) mission, JAXA (Cell-Free Epigenome) mission, Twins study, and spleens from mice on the International Space Station. Overall, microgravity alters specific pathways for optimal immunity, including the cytoskeleton, interferon signaling, pyroptosis, temperature-shock, innate inflammation (e.g., Coronavirus pathogenesis pathway and IL-6 signaling), nuclear receptors, and sirtuin signaling. Microgravity directs monocyte inflammatory parameters, and impairs T cell and NK cell functionality. Using machine learning, we identify numerous compounds linking microgravity to immune cell transcription, and demonstrate that the flavonol, quercetin, can reverse most abnormal pathways. These results define immune cell alterations in microgravity, and provide opportunities for countermeasures to maintain normal immunity in space.