Importance of Structural Databases, Molecular Pharmacophores, Supramolecular Heterosynthons, and Artificial Intelligence–Machine Learning–Neural Network Tools in Drug Discovery

药效团 人工神经网络 计算机科学 超分子化学 人工智能 药物发现 化学信息学 机器学习 化学 生物信息学 立体化学 生物 分子 有机化学
作者
Ashwini Nangia
出处
期刊:Crystal Growth & Design [American Chemical Society]
卷期号:24 (16): 6888-6910 被引量:2
标识
DOI:10.1021/acs.cgd.4c00422
摘要

The progress and growth of drug discovery and development (DDD) in the past five decades are reviewed in terms of the changing trends over the years. The importance of the Cambridge Structural Database (CSD) and the Protein Data Bank (PDB) starting in the 1990s brought in the phase of structure-based drug design (SBDD). The supramolecular synthon led to the heterosynthon, which became the cornerstone for crystal engineering of multicomponent cocrystals and salts (MCCS) as improved medicines. Numerous studies on enhancing the solubility and permeability of biopharmaceutics classification system (BCS) class II and IV drugs in the decades of 2000–2020 resulted in a paradigm shift toward supramolecular crystalline complexes as drug substances, namely, MCCS instead of molecule-based drugs, new chemical entity (NCE), or new molecular entity (NME) entries. With the numerical explosion in the number of possible druglike substances and their pharmaceutical cocrystals and salts as improved materials, artificial intelligence (AI), machine learning (ML), and neural networks (NN) were introduced as computational tools to accelerate drug discovery decision making. This review ends with a thought on integrating the abovementioned advances over the past three decades to propose a hierarchic model for DDD with varying levels of difficulty and complexity for success in different resource settings. With over a million crystal structures in the CSD and over 200 000 protein structures in the PDB, together with cheminformatics tools for prediction, synthesis, and crystallization, integrated drug discovery is poised for rapid advances in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
了然完成签到,获得积分10
刚刚
喜悦绿旋发布了新的文献求助10
刚刚
1秒前
852应助刘龙强采纳,获得10
2秒前
NexusExplorer应助妮妮采纳,获得10
2秒前
3秒前
子非鱼完成签到,获得积分20
3秒前
123完成签到 ,获得积分10
4秒前
4秒前
4秒前
加油加油完成签到,获得积分10
5秒前
丰富的以筠完成签到,获得积分10
5秒前
6秒前
丘比特应助十一采纳,获得10
6秒前
念念发布了新的文献求助10
6秒前
7秒前
幽默亦旋完成签到 ,获得积分10
7秒前
阿斯顿完成签到,获得积分10
7秒前
上官若男应助ayan采纳,获得10
8秒前
medlive2020完成签到,获得积分10
8秒前
quanbin发布了新的文献求助10
8秒前
科研挂发布了新的文献求助30
8秒前
8秒前
李林发布了新的文献求助10
8秒前
黎某发布了新的文献求助10
8秒前
张怡博完成签到 ,获得积分10
9秒前
美好斓发布了新的文献求助30
10秒前
10秒前
10秒前
11秒前
hhuajw完成签到,获得积分10
11秒前
11秒前
yukito发布了新的文献求助20
12秒前
medlive2020发布了新的文献求助10
12秒前
野性的夏柳完成签到,获得积分10
12秒前
能干宛秋发布了新的文献求助10
13秒前
善学以致用应助夏天的风采纳,获得10
13秒前
科研通AI5应助栗子采纳,获得10
13秒前
ZXT完成签到 ,获得积分10
13秒前
欣喜的未来完成签到,获得积分10
13秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
The Healthy Socialist Life in Maoist China, 1949–1980 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785297
求助须知:如何正确求助?哪些是违规求助? 3330886
关于积分的说明 10248776
捐赠科研通 3046307
什么是DOI,文献DOI怎么找? 1671979
邀请新用户注册赠送积分活动 800924
科研通“疑难数据库(出版商)”最低求助积分说明 759881