Revolutionizing Combat Casualty Care: The Power of Digital Twins in Optimizing Casualty Care Through Passive Data Collection

医疗急救 背景(考古学) 数据收集 医疗保健 军事医学 计算机科学 医学 计算机安全 运筹学 工程类 政治学 统计 数学 古生物学 法学 生物
作者
Jeremy Pamplin,Mason H Remondelli,Darshan Thota,Jeremy Trapier,William T. Davis,Nathan Fisher,Paul O Kwon,Matthew T. Quinn
出处
期刊:Military Medicine [Oxford University Press]
被引量:3
标识
DOI:10.1093/milmed/usae249
摘要

ABSTRACT The potential impact of large-scale combat operations and multidomain operations against peer adversaries poses significant challenges to the Military Health System including large volumes of critically ill and injured casualties, prolonged care times in austere care contexts, limited movement, contested logistics, and denied communications. These challenges contribute to the probability of higher casualty mortality and risk that casualty care hinders commanders’ forward momentum or opportunities for overmatch on the battlefield. Novel technical solutions and associated concepts of operation that fundamentally change the delivery of casualty care are necessary to achieve desired medical outcomes that include maximizing Warfighter battle-readiness, minimizing return-to-duty time, optimizing medical evacuation that clears casualties from the battlefield while minimizing casualty morbidity and mortality, and minimizing resource consumption across the care continuum. These novel solutions promise to “automate” certain aspects of casualty care at the level of the individual caregiver and the system level, to unburden our limited number of providers to do more and make better (data-driven) decisions. In this commentary, we describe concepts of casualty digital twins—virtual representations of a casualty’s physical journey through the roles of care—and how they, combined with passive data collection about casualty status, caregiver actions, and real-time resource use, can lead to human–machine teaming and increasing automation of casualty care across the care continuum while maintaining or improving outcomes. Our path to combat casualty care automation starts with mapping and modeling the context of casualty care in realistic environments through passive data collection of large amounts of unstructured data to inform machine learning models. These context-aware models will be matched with patient physiology models to create casualty digital twins that better predict casualty needs and resources required and ultimately inform and accelerate decision-making across the continuum of care. We will draw from the experience of the automotive industry as an exemplar for achieving automation in health care and inculcate automation as a mechanism for optimizing the casualty care survival chain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
菜鸟发布了新的文献求助10
2秒前
充电宝应助第3行星采纳,获得10
2秒前
HuiJN完成签到 ,获得积分10
3秒前
毛毛发布了新的文献求助10
4秒前
onion发布了新的文献求助10
4秒前
白日梦想家完成签到,获得积分10
4秒前
4秒前
4秒前
123发布了新的文献求助10
5秒前
瞿亭龙发布了新的文献求助10
5秒前
田様应助Fine采纳,获得10
5秒前
北风歌完成签到,获得积分10
6秒前
NexusExplorer应助BK_采纳,获得30
6秒前
rengar完成签到,获得积分10
7秒前
书于竹帛发布了新的文献求助10
7秒前
ganchao1776完成签到,获得积分10
7秒前
Vi发布了新的文献求助10
7秒前
缓慢皮皮虾完成签到 ,获得积分10
8秒前
8秒前
g123完成签到,获得积分10
8秒前
志明发布了新的文献求助10
8秒前
9秒前
丘比特应助菜鸟采纳,获得10
9秒前
9秒前
10秒前
FashionBoy应助V-aliang采纳,获得10
10秒前
10秒前
李爱国应助柔弱云朵采纳,获得10
11秒前
Akim应助178181采纳,获得10
11秒前
11秒前
大模型应助DZ采纳,获得10
11秒前
充电宝应助zhao采纳,获得10
11秒前
桐桐应助humblelucas采纳,获得10
11秒前
第3行星完成签到,获得积分10
12秒前
桐桐应助乐正如彤采纳,获得10
12秒前
麦香鱼发布了新的文献求助10
12秒前
Ha7完成签到,获得积分10
12秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979146
求助须知:如何正确求助?哪些是违规求助? 3523056
关于积分的说明 11215854
捐赠科研通 3260487
什么是DOI,文献DOI怎么找? 1800049
邀请新用户注册赠送积分活动 878813
科研通“疑难数据库(出版商)”最低求助积分说明 807092