已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Revolutionizing Combat Casualty Care: The Power of Digital Twins in Optimizing Casualty Care Through Passive Data Collection

医疗急救 背景(考古学) 数据收集 医疗保健 军事医学 计算机科学 医学 计算机安全 运筹学 工程类 政治学 统计 数学 古生物学 法学 生物
作者
Jeremy Pamplin,Mason H Remondelli,Darshan Thota,Jeremy Trapier,William T. Davis,Nathan Fisher,Paul O Kwon,Matthew T. Quinn
出处
期刊:Military Medicine [Oxford University Press]
被引量:3
标识
DOI:10.1093/milmed/usae249
摘要

ABSTRACT The potential impact of large-scale combat operations and multidomain operations against peer adversaries poses significant challenges to the Military Health System including large volumes of critically ill and injured casualties, prolonged care times in austere care contexts, limited movement, contested logistics, and denied communications. These challenges contribute to the probability of higher casualty mortality and risk that casualty care hinders commanders’ forward momentum or opportunities for overmatch on the battlefield. Novel technical solutions and associated concepts of operation that fundamentally change the delivery of casualty care are necessary to achieve desired medical outcomes that include maximizing Warfighter battle-readiness, minimizing return-to-duty time, optimizing medical evacuation that clears casualties from the battlefield while minimizing casualty morbidity and mortality, and minimizing resource consumption across the care continuum. These novel solutions promise to “automate” certain aspects of casualty care at the level of the individual caregiver and the system level, to unburden our limited number of providers to do more and make better (data-driven) decisions. In this commentary, we describe concepts of casualty digital twins—virtual representations of a casualty’s physical journey through the roles of care—and how they, combined with passive data collection about casualty status, caregiver actions, and real-time resource use, can lead to human–machine teaming and increasing automation of casualty care across the care continuum while maintaining or improving outcomes. Our path to combat casualty care automation starts with mapping and modeling the context of casualty care in realistic environments through passive data collection of large amounts of unstructured data to inform machine learning models. These context-aware models will be matched with patient physiology models to create casualty digital twins that better predict casualty needs and resources required and ultimately inform and accelerate decision-making across the continuum of care. We will draw from the experience of the automotive industry as an exemplar for achieving automation in health care and inculcate automation as a mechanism for optimizing the casualty care survival chain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
左左完成签到 ,获得积分10
1秒前
jimmyhui完成签到,获得积分10
3秒前
3秒前
东十八完成签到 ,获得积分10
4秒前
橙橙完成签到,获得积分10
5秒前
5秒前
wenhuanwenxian完成签到 ,获得积分10
6秒前
6秒前
Jay发布了新的文献求助10
7秒前
8秒前
酒渡完成签到,获得积分10
8秒前
sswaggyc发布了新的文献求助10
9秒前
狂野的不二完成签到,获得积分10
9秒前
mouse发布了新的文献求助10
12秒前
打工不可能完成签到,获得积分10
12秒前
chenrong发布了新的文献求助10
13秒前
几两完成签到 ,获得积分10
14秒前
18秒前
czj完成签到 ,获得积分10
20秒前
sswaggyc完成签到,获得积分10
21秒前
悟格发布了新的文献求助10
21秒前
稳重淇发布了新的文献求助10
21秒前
21秒前
Aaron_Chia完成签到 ,获得积分10
21秒前
一加一大于二完成签到 ,获得积分10
25秒前
YOLO完成签到 ,获得积分10
27秒前
11632发布了新的文献求助10
27秒前
冬菊完成签到 ,获得积分10
28秒前
制冷剂完成签到 ,获得积分10
28秒前
丁宇卓完成签到 ,获得积分10
29秒前
HEIKU完成签到,获得积分0
29秒前
刻苦的小土豆完成签到 ,获得积分10
30秒前
William_l_c完成签到,获得积分10
31秒前
111完成签到 ,获得积分10
31秒前
悟格完成签到,获得积分10
32秒前
Jayzie完成签到 ,获得积分10
33秒前
香蕉觅云应助William_l_c采纳,获得10
34秒前
34秒前
12完成签到 ,获得积分10
36秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Cleaning Technology in Semiconductor Device Manufacturing: Proceedings of the Sixth International Symposium (Advances in Soil Science) 200
Study of enhancing employee engagement at workplace by adopting internet of things 200
Champagne & Shambles: The Arkwright's and the Country House in Crisis 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837187
求助须知:如何正确求助?哪些是违规求助? 3379511
关于积分的说明 10509277
捐赠科研通 3099141
什么是DOI,文献DOI怎么找? 1706925
邀请新用户注册赠送积分活动 821329
科研通“疑难数据库(出版商)”最低求助积分说明 772536