亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine-learning strategies for the accurate and efficient analysis of x-ray spectroscopy

光谱学 X射线光谱学 计算机科学 材料科学 人工智能 物理 天文
作者
Thomas J. Penfold,Luke Watson,Clelia Middleton,Tudur Wyn David,Sneha Verma,Thomas Pope,J. Kaczmarek,Conor D. Rankine
出处
期刊:Machine learning: science and technology [IOP Publishing]
卷期号:5 (2): 021001-021001 被引量:5
标识
DOI:10.1088/2632-2153/ad5074
摘要

Abstract Computational spectroscopy has emerged as a critical tool for researchers looking to achieve both qualitative and quantitative interpretations of experimental spectra. Over the past decade, increased interactions between experiment and theory have created a positive feedback loop that has stimulated developments in both domains. In particular, the increased accuracy of calculations has led to them becoming an indispensable tool for the analysis of spectroscopies across the electromagnetic spectrum. This progress is especially well demonstrated for short-wavelength techniques, e.g. core-hole (x-ray) spectroscopies, whose prevalence has increased following the advent of modern x-ray facilities including third-generation synchrotrons and x-ray free-electron lasers. While calculations based on well-established wavefunction or density-functional methods continue to dominate the greater part of spectral analyses in the literature, emerging developments in machine-learning algorithms are beginning to open up new opportunities to complement these traditional techniques with fast, accurate, and affordable ‘ black-box ’ approaches. This Topical Review recounts recent progress in data-driven/machine-learning approaches for computational x-ray spectroscopy. We discuss the achievements and limitations of the presently-available approaches and review the potential that these techniques have to expand the scope and reach of computational and experimental x-ray spectroscopic studies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
TZMY发布了新的文献求助10
5秒前
yuon完成签到,获得积分10
8秒前
10秒前
10秒前
nessa完成签到 ,获得积分10
12秒前
Criminology34应助de采纳,获得10
16秒前
慕青应助核桃采纳,获得10
24秒前
在水一方应助核桃采纳,获得10
24秒前
shhoing应助核桃采纳,获得10
24秒前
上官若男应助核桃采纳,获得10
24秒前
共享精神应助核桃采纳,获得10
24秒前
njxray发布了新的文献求助10
26秒前
李健的小迷弟应助核桃采纳,获得10
28秒前
爆米花应助核桃采纳,获得10
28秒前
CodeCraft应助核桃采纳,获得10
28秒前
希望天下0贩的0应助核桃采纳,获得10
28秒前
852应助核桃采纳,获得10
28秒前
junlin应助核桃采纳,获得10
28秒前
星星亮应助核桃采纳,获得10
29秒前
搜集达人应助核桃采纳,获得10
29秒前
在水一方应助核桃采纳,获得10
29秒前
慕青应助核桃采纳,获得10
29秒前
32秒前
32秒前
在水一方应助核桃采纳,获得10
35秒前
小二郎应助核桃采纳,获得10
35秒前
Owen应助核桃采纳,获得10
35秒前
在水一方应助核桃采纳,获得20
35秒前
可爱的函函应助核桃采纳,获得10
36秒前
英姑应助核桃采纳,获得10
36秒前
香蕉觅云应助核桃采纳,获得10
36秒前
JamesPei应助核桃采纳,获得10
36秒前
李爱国应助核桃采纳,获得30
36秒前
大龙哥886应助核桃采纳,获得10
36秒前
36秒前
量子星尘发布了新的文献求助10
36秒前
白华苍松发布了新的文献求助10
37秒前
39秒前
研友_ZGRqKn完成签到,获得积分10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5538641
求助须知:如何正确求助?哪些是违规求助? 4625711
关于积分的说明 14596757
捐赠科研通 4566378
什么是DOI,文献DOI怎么找? 2503216
邀请新用户注册赠送积分活动 1481345
关于科研通互助平台的介绍 1452701