Surface Defect Detection of Steel Plate Based on SKS-YOLO

交叉口(航空) 计算机科学 人工智能 核(代数) 特征提取 特征(语言学) 棱锥(几何) 模式识别(心理学) 过程(计算) 曲面(拓扑) 趋同(经济学) 计算机视觉 数学 工程类 几何学 哲学 组合数学 航空航天工程 操作系统 经济增长 经济 语言学
作者
Shiyang Zhou,Siming Ao,Zhiying Yang,Huaiguang Liu
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 91499-91510 被引量:13
标识
DOI:10.1109/access.2024.3422244
摘要

During the production process of steel plate, surface defect detection is crucial for high-quality products. For the existing defect detection method based on machine vision, there are various types of problems, such as large model calculations, low detection accuracy and difficulties of recognizing small defect targets. To reduce and solve these issues, the paper proposes a new defect detection model, simplified kernel and squeeze on a you only look once network (SKS-YOLO), which can achieve rapid and effective defect detection on steel plate. Firstly, it adopts EfficientNetv2 as the backbone, significantly reducing model calculations and accelerating training speed while maintaining accuracy. Subsequently, the atrous spatial pyramid pooling (ASPP) module is utilized to obtain a larger receptive field, extracting more feature information from surface defects. The integration of the squeeze excitation network (SE-Net) attention mechanism enhances capabilities of feature extraction furtherly. Then, the K-means algorithm is applied to cluster and obtain more suitable anchor frames for defect targets. It not only increases the number of positive samples, but also expedites model convergence. Finally, the loss function of simplified intersection over union (SIoU) is used to enhance the ability of model to locate and detect surface defect targets. The experimental results show that the mean average precision (mAP) is 89.40% at a detection speed of 55 frames per second (FPS), which is better than the state-of-the-art (SOTA) detection models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
OPV驳回了大模型应助
1秒前
2秒前
2秒前
2秒前
李智点发布了新的文献求助10
3秒前
3秒前
3秒前
小二郎应助HY采纳,获得30
4秒前
4秒前
一个小柑橘完成签到,获得积分10
4秒前
科目三应助Rui采纳,获得10
4秒前
4秒前
5秒前
5秒前
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
5秒前
开心南松应助科研通管家采纳,获得10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
5秒前
桐桐应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
桐桐应助科研通管家采纳,获得10
5秒前
丘比特应助科研通管家采纳,获得30
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
Owen应助科研通管家采纳,获得10
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
冷酷夏真完成签到 ,获得积分10
5秒前
冲冲冲应助科研通管家采纳,获得20
5秒前
Jasper应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
乔达摩悉达多完成签到 ,获得积分10
7秒前
7秒前
素心发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5730704
求助须知:如何正确求助?哪些是违规求助? 5324871
关于积分的说明 15319570
捐赠科研通 4877061
什么是DOI,文献DOI怎么找? 2619989
邀请新用户注册赠送积分活动 1569293
关于科研通互助平台的介绍 1525835