电合成
材料科学
类比
原子单位
比例(比率)
电化学
尿素
纳米技术
无机化学
化学工程
化学
物理化学
物理
有机化学
量子力学
工程类
电极
语言学
哲学
作者
Pingyi Feng,Buqi Ke,Shao Wang,Yanxu Chen,Mingyu Cheng,Zechuan Dai,Bocheng Zhang,Yifan Li,Genqiang Zhang
标识
DOI:10.1002/anie.202509834
摘要
Electrocatalytic urea synthesis from CO2 and NO3‐ offers a sustainable strategy to address environmental challenges and growing urea demand. However, current systems suffer inefficient C‐N coupling due to poor selectivity toward critical C/N‐intermediates. Herein, we engineered atomic‐scale Mott‐Schottky analogy in SnCu nanoalloy to create electron‐enriched Cu sites, enabling remarkable urea production through quadruple synergy. Sn2Cu delivered exceptional urea yield (28.9 mmol h‐1 gcat.‐1) with 46.7% Faradaic efficiency (FE) in H‐cell, while demonstrating practical potential with superior catalytic performance (yield: 72.6 mmol h‐1 gcat.‐1, FE: 41.3%, stability: 60 hours) at ‐0.52 V in flow cell. In‐situ synchrotron radiation Fourier transform infrared spectroscopy and theoretical calculations revealed electron‐enriched Cu active sites enhanced CO2/NO3‐ co‐adsorption and *CO coverage, while steering reaction pathway toward *CO‐*NHO coupling and suppressing hydrogen evolution, thereby reducing rate‐determining step energy barrier and prioritizing C‐N coupling. This work develops a structure‐adsorption‐reactivity framework, providing fundamental guidance for advanced urea electrocatalyst design.
科研通智能强力驱动
Strongly Powered by AbleSci AI