材料科学
双模
金属有机骨架
稀土
航程(航空)
对偶(语法数字)
大气温度范围
金属
光电子学
纳米技术
遥感
冶金
复合材料
物理化学
航空航天工程
吸附
气象学
化学
艺术
工程类
地质学
文学类
物理
作者
Zhizhuo Gu,Jiaxin Cui,Liao-Kuo Gong,Lian Xia,Fengli Qu
标识
DOI:10.1021/acsami.5c14769
摘要
With the rapid advancement of modern technology, particularly microelectronics and the Internet of Things (IoT), noncontact thermometry that offers high sensitivity and accuracy, especially under extreme conditions and across a wide temperature range, is desirable yet remains a challenge. In this study, we developed an innovative Ln-MOF-based thermometer integrating fluorescence and magnetism, achieving precise, noncontact temperature sensing across an ultrawide range of 2-483 K. Magnetic susceptibility dominates at low temperatures, while fluorescence intensity and lifetime govern high-temperature sensing, presenting high sensitivity (9.18%.K-1) and low uncertainty (0.04 K) across the entire temperature range. DFT calculations reveal that Eu3+ doping reconstructs the electronic structure, narrowing the bandgap and facilitating thermally activated energy transfer from Tb3+ to Eu3+. This underlies the temperature-dependent emission color shift from green to red. The Ln-MOF exhibits excellent thermal stability and sensing performance, offering a promising platform for remote temperature monitoring in extreme environments.
科研通智能强力驱动
Strongly Powered by AbleSci AI