已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

BCE YOLOv8: A novel YOLO model for brain tumor instance segmentation

分割 人工智能 计算机科学 计算机视觉 模式识别(心理学)
作者
Wei Li,Danni Liu,Yiling Wang,Chang Hun Song
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
标识
DOI:10.1088/2057-1976/adf8f1
摘要

Abstract Precision instance segmentation of brain tumor is a crucial for realizing intelligent healthcare and alleviating the strain of physicians. Aim at the challenges of low segmentation precision and missed detections that occurred during the segmentation process, this paper proposes a brain tumor intelligent segmentation method that is founded on Bidirectional Feature Pyramid Network (Bi-FPN)-Coordinate Attention (CA)- Efficient-IoU (EIoU) YOLOv8 (BCE YOLOv8). In the feature extraction stage, the CA is incorporated into the C2f module. The CA possesses the characteristic of automatically learning the weights among different channels, enabling the feature extraction process to prioritize significant tumor characteristics, thereby enhancing efficacy. To improve the precision of architecture, adopt weighted Bi-FPN to complete more sophisticated feature fusion by bidirectional feature paths. Furthermore, the EIoU loss function, which effectively measures the difference between the ground truth box and the anchor box, is incorporated into the architecture to accelerate convergence. Finally, the Bi-FPN-CA-EIoU YOLOv8 is proposed. The experimental outcomes indicate that the precision of BCE YOLOv8 is 67.8%, and the values of mAP@0.5 and mAP@0.5:0.95 are 64.6% and 50.6%. In comparison to the YOLOv8, the precision of BCE YOLOv8 has improved by 21.07%, and the mAP@0.5 has increased by 2.54%. There is also a significant improvement compared to the lasted YOLOv11, with an increase of 16.49%. BCE YOLOv8 enhances the precision of brain tumor instance segmentation and mitigates the situation of missed detections, delivering optimal overall performance and offering technical assistance for intelligent brain tumor detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
vicky完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
fengjingjing发布了新的文献求助10
3秒前
TaoJ发布了新的文献求助10
3秒前
3秒前
Lucas应助痴情的翠桃采纳,获得10
3秒前
3秒前
阿基米德发布了新的文献求助10
4秒前
Iron_five完成签到 ,获得积分0
4秒前
雅典的宠儿完成签到 ,获得积分10
4秒前
6秒前
6秒前
7秒前
江江发布了新的文献求助10
7秒前
SiO2完成签到,获得积分10
7秒前
领导范儿应助casperzwj采纳,获得10
8秒前
8秒前
10秒前
10秒前
阳春发布了新的文献求助10
11秒前
Lulu完成签到 ,获得积分10
11秒前
ZZH发布了新的文献求助10
12秒前
寒冷的咖啡应助桃子e采纳,获得10
14秒前
hhq完成签到 ,获得积分10
16秒前
万能图书馆应助江江采纳,获得10
17秒前
灵梦柠檬酸完成签到,获得积分10
18秒前
19秒前
勤奋幻嫣完成签到,获得积分20
22秒前
yszhang完成签到 ,获得积分10
22秒前
某某完成签到 ,获得积分10
23秒前
23秒前
听音乐的可可完成签到 ,获得积分10
24秒前
王小苗儿关注了科研通微信公众号
25秒前
姆姆没买完成签到 ,获得积分0
26秒前
LUCKY完成签到 ,获得积分10
26秒前
SciGPT应助He采纳,获得10
27秒前
CNC发布了新的文献求助10
27秒前
28秒前
abcd完成签到,获得积分20
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5779519
求助须知:如何正确求助?哪些是违规求助? 5648009
关于积分的说明 15451956
捐赠科研通 4910775
什么是DOI,文献DOI怎么找? 2642871
邀请新用户注册赠送积分活动 1590541
关于科研通互助平台的介绍 1544954