Python(编程语言)
化学空间
水准点(测量)
计算机科学
集合(抽象数据类型)
分子
发电机(电路理论)
空格(标点符号)
试验装置
统计物理学
人工智能
机器学习
算法
物理
化学
热力学
量子力学
功率(物理)
生物化学
药物发现
操作系统
大地测量学
地理
程序设计语言
作者
Thomas Gasevic,Marcel Müller,Jonathan Schöps,Stephanie Lanius,Jan Hermann,Stefan Grimme,Andreas Hansen
标识
DOI:10.1021/acs.jcim.5c01364
摘要
We introduce MindlessGen, a Python-based generator for creating chemically diverse, "mindless" molecules through random atomic placement and subsequent geometry optimization. Using this framework, we constructed the MB2061 benchmark set, containing 2061 molecules with high-level PNO-LCCSD(T)-F12 reference data for H2-promoted decomposition reactions. This set provides a challenging benchmark for testing, validating, and training density functional approximations (DFAs), semiempirical methods, force fields, and machine learning potentials using molecular structures beyond conventional chemical space. For DFAs, we initially hypothesized that highly parametrized functionals might perform poorly on this set. However, no consistent relationship between the fitting strategy and accuracy was observed. A clear Jacob's ladder trend emerges, with ωB97X-2 achieving the lowest mean absolute error (MAE) of 8.4 kcal·mol–1 and r2SCAN-3c offering a robust cost-efficient alternative (19.6 kcal·mol–1). Furthermore, we discuss the performance of selected semiempirical methods and contemporary machine-learning interatomic potentials.
科研通智能强力驱动
Strongly Powered by AbleSci AI