亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MetaIndux-TS: Frequency-Aware AIGC Foundation Model for Industrial Time Series

基础(证据) 系列(地层学) 计算机科学 历史 地质学 考古 古生物学
作者
Haiteng Wang,Lei Ren,Yugong Li,Yuqing Wang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13 被引量:1
标识
DOI:10.1109/tnnls.2025.3577203
摘要

Implementing advanced AI techniques in industrial manufacturing requires large volumes of annotated sensor data. Unfortunately, collecting such data is often impractical due to extreme environments and the manual burden of expert annotation. Recent advancements in artificial intelligence generated content (AIGC) have inspired the exploration of industrial time-series generation to mitigate data shortages. However, existing AIGC models encounter difficulties in generating industrial time series due to their complex temporal dynamics, multichannel intercolumn correlations, and diverse frequency characteristics. To address these challenges, we propose MetaIndux-TS, a frequency-informed AIGC foundation model based on diffusion model frameworks. This model is designed to generate industrial time-series data under a variety of working conditions, across different types of equipment, and with variable lengths. Specifically, MetaIndux-TS integrates dual-frequency cross-attention networks, transforming time series into the frequency domain to model multivariate dependencies and capture intricate temporal details. In addition, the contrastive synthesis layer is constructed to generate high-fidelity time series by comparing periodic and long-term trends with initial noisy sequences. Comprehensive experiments show that MetaIndux-TS outperforms state-of-the-art models (SSSD, Dit, and TabDDPM), achieving a 57.5% improvement in fidelity and 20.4% in predictive score. MetaIndux-TS exhibits zero-shot generation capabilities for samples under unseen conditions, offering the potential to address data collection challenges in extreme environments. Codes are available at: https://github.com/Dolphin-wang/MetaIndux.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
流萤完成签到,获得积分20
4秒前
5秒前
霹雳侠完成签到,获得积分10
9秒前
ddd发布了新的文献求助10
11秒前
CipherSage应助科研通管家采纳,获得10
49秒前
Lucas应助生动之云采纳,获得10
53秒前
57秒前
velsaber发布了新的文献求助30
1分钟前
靓丽的熠彤完成签到,获得积分10
1分钟前
1分钟前
SciGPT应助ddd采纳,获得10
1分钟前
孤独的哈密瓜数据线完成签到 ,获得积分10
2分钟前
甜甜纸飞机完成签到 ,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
velsaber发布了新的文献求助30
2分钟前
3分钟前
范ER完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
Hello应助胡萝卜叶子采纳,获得10
3分钟前
3分钟前
胡萝卜叶子完成签到,获得积分10
3分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
5分钟前
冬去春来完成签到 ,获得积分10
5分钟前
田様应助淡水美人鱼采纳,获得10
5分钟前
jqliu发布了新的文献求助10
6分钟前
6分钟前
6分钟前
布鲁塞尔土豆完成签到,获得积分10
6分钟前
6分钟前
jqliu完成签到,获得积分10
6分钟前
7分钟前
淡水美人鱼完成签到,获得积分10
7分钟前
酷波er应助穿林打夜采纳,获得10
8分钟前
Akim应助科研通管家采纳,获得10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
丁元英完成签到,获得积分10
9分钟前
10分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
(The) Founding Fathers of America 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4457749
求助须知:如何正确求助?哪些是违规求助? 3922542
关于积分的说明 12171474
捐赠科研通 3573833
什么是DOI,文献DOI怎么找? 1963209
邀请新用户注册赠送积分活动 1002325
科研通“疑难数据库(出版商)”最低求助积分说明 897041