Research on Corrosion Prediction Model Based on Mechanism and Data Fusion

作者
Liangchao Chen,Shuai Wang,Xinyuan Lu,Haopeng Li
标识
DOI:10.1115/pvp2025-152625
摘要

Abstract Frequent corrosion incidents of equipment and process pipelines in the refining and chemical production process pose a serious threat to the safe and stable operation of the equipment. Corrosion prediction, as the core of corrosion risk management, currently lacks a theoretical prediction model accurately derived from fundamental mechanisms based on data generation. Key challenges include unclear corrosion mechanisms, ineffective data fusion strategies, and limited precision in existing predictive models. With the development of artificial intelligence, exploring unknown and potential corrosion patterns and information under complex conditions based on the cross-fusion of mechanisms and data has become a key direction for corrosion prediction. This paper proposes an interpretable, widely applicable, and high-precision mechanism-data fusion corrosion prediction method. A corrosion kinetics model for typical coupled corrosion environments is developed through mechanistic analysis, and the application corrosion dataset is augmented under the guidance of the mechanism model using K-Nearest Neighbors (KNN) and Generative Adversarial Network (GAN) techniques. Subsequently, an optimized random forest-based corrosion rate prediction model is established. Through the application verification of on-site data of process pipelines in a low-temperature coupled corrosion environment, the corrosion rate prediction model constructed in this paper has good predictive performance, with an RMSE of 0.00623, an MAE of 0.00452, and an R2 of 0.816. This method has certain theoretical significance for improving the precision and applicability of corrosion prediction, and can provide technical support for equipment risk management and predictive maintenance, ensuring the safe and reliable operation of the equipment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
聪慧的冬天完成签到 ,获得积分10
刚刚
CipherSage应助清秀的语堂采纳,获得10
1秒前
1秒前
Sakura发布了新的文献求助10
1秒前
surin615应助钟迪采纳,获得50
1秒前
牧妙芹完成签到,获得积分10
2秒前
张小闲完成签到 ,获得积分10
2秒前
Hello应助竹简采纳,获得10
2秒前
willing-li完成签到,获得积分10
2秒前
冶金人发布了新的文献求助10
3秒前
shichao发布了新的文献求助10
3秒前
3秒前
呼呼呼完成签到,获得积分10
3秒前
小刚完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
4秒前
蓓蓓完成签到 ,获得积分10
4秒前
5秒前
果汁发布了新的文献求助10
6秒前
kailash发布了新的文献求助30
7秒前
彭于晏应助Sakura采纳,获得10
7秒前
clyhg完成签到,获得积分10
8秒前
QQ发布了新的文献求助10
9秒前
9秒前
zhang完成签到,获得积分10
9秒前
可爱半山发布了新的文献求助10
9秒前
英俊的铭应助丙队长采纳,获得10
9秒前
文艺的懿完成签到,获得积分10
9秒前
10秒前
10秒前
nancyzhy完成签到 ,获得积分10
11秒前
LEEGAN发布了新的文献求助10
12秒前
ccc完成签到 ,获得积分10
12秒前
Lexcellent完成签到,获得积分10
12秒前
蔺冥完成签到,获得积分10
13秒前
13秒前
顺心的定帮完成签到,获得积分10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5316908
求助须知:如何正确求助?哪些是违规求助? 4459356
关于积分的说明 13874913
捐赠科研通 4349318
什么是DOI,文献DOI怎么找? 2388758
邀请新用户注册赠送积分活动 1382917
关于科研通互助平台的介绍 1352277