Intelligent Tunnel Lining Defect Detection: Advances in Image Acquisition and Data-Driven Techniques

数据采集 计算机科学 图像(数学) 人工智能 计算机视觉 地质学 操作系统
作者
Yongsheng Yao,Yindi Zhao,Jue Li,Feng Wang,Chen Liu
标识
DOI:10.1093/iti/liaf013
摘要

Abstract Tunnel environments often posed challenges such as complex backgrounds, low lighting, and low contrast, while the availability of open-source tunnel defect image data remained limited. Data augmentation techniques emerged as crucial methods to address these issues and enhance model generalization. This paper systematically reviews 276 key publications from 2018 to 2024, providing a comprehensive overview of the latest research progress, particularly in image acquisition and data augmentation, for intelligent tunnel lining defect detection. It began by introducing various methods for capturing images of tunnel surface and internal defects, including digital photography, laser scanning, and ground-penetrating radar (GPR) techniques, while analyzing their respective advantages and limitations. The discussion then focused on critical aspects of constructing defect datasets, such as image processing, data annotation, and the availability of public datasets, highlighting challenges associated with data collection and labeling. Furthermore, this study summarized the major challenges faced in the field, including high costs of data collection and annotation, a lack of diverse and comprehensive datasets, and the computational resource demands of advanced augmentation methods. Based on these challenges, the paper proposed future research directions, including the acquisition of more real-world GPR data, the development of public tunnel defect datasets, and the exploration of lightweight data augmentation techniques. These directions aimed to enhance the robustness and generalization of tunnel defect detection models. They also aimed to improve the efficiency and practicality of these models for real-world applications. This comprehensive review serves as a valuable reference for researchers and practitioners. It is especially useful for those engaged in intelligent infrastructure inspection and maintenance using advanced computer vision techniques.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jingjun_Li发布了新的文献求助10
1秒前
1秒前
黎明的曙光完成签到,获得积分10
2秒前
5秒前
5秒前
我要发SCI完成签到 ,获得积分10
6秒前
bkagyin应助Omni采纳,获得10
6秒前
申锴完成签到,获得积分10
7秒前
7秒前
7秒前
大模型应助DAJI采纳,获得10
7秒前
医学生的小宝库完成签到,获得积分10
8秒前
macaroni完成签到,获得积分10
8秒前
10秒前
10秒前
dlindl发布了新的文献求助10
10秒前
123发布了新的文献求助10
10秒前
11秒前
12秒前
Luos完成签到,获得积分10
12秒前
meng发布了新的文献求助10
12秒前
芳芳子发布了新的文献求助10
13秒前
李健的小迷弟应助zz采纳,获得30
15秒前
15秒前
16秒前
du30发布了新的文献求助10
17秒前
17秒前
迦鳞完成签到 ,获得积分10
18秒前
Jasper应助李睿采纳,获得10
18秒前
领导范儿应助123采纳,获得10
18秒前
隐形曼青应助yang采纳,获得30
18秒前
Aiden完成签到,获得积分10
19秒前
19秒前
孙嘉畯完成签到 ,获得积分10
20秒前
沐林杨发布了新的文献求助10
21秒前
Aurinse发布了新的文献求助10
21秒前
科研通AI6应助dlindl采纳,获得10
23秒前
喂喂喂发布了新的文献求助30
24秒前
25秒前
Raine发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4551718
求助须知:如何正确求助?哪些是违规求助? 3981152
关于积分的说明 12325944
捐赠科研通 3650590
什么是DOI,文献DOI怎么找? 2010459
邀请新用户注册赠送积分活动 1045779
科研通“疑难数据库(出版商)”最低求助积分说明 934246