Predicting the Site-Specific Toxicity of Metals to Fishes Using a New Machine Learning-Based Approach

毒性 重金属 环境科学 计算机科学 环境化学 机器学习 化学 人工智能 有机化学
作者
Yinghao Cheng,Ying Wang,Zihan Xu,Chenglian Feng,Zhaomin Dong,Wenhong Fan,Kmy Leung,Fengchang Wu
出处
期刊:Environmental Science & Technology [American Chemical Society]
标识
DOI:10.1021/acs.est.5c00958
摘要

Fishes of various trophic levels play an important role in the stability and balance of aquatic ecosystems. Metal contaminants can impair the survival and population fitness of fish at elevated concentrations. When universal water quality criteria (WQC) of metals are adopted to protect different species in different geographic regions, they may not adequately protect all fish due to a lack of consideration for site-specific environmental conditions and species assemblages. Additionally, obtaining credible toxicity data for rare and endangered species is challenging. Therefore, this study aims to develop a robust, machine learning-based method to predict the toxicity of metals to various fish species, including rare and endangered species, and combine it with the non-parametric kernel density estimation of the species sensitivity distribution (NPKDE-SSD) model to derive site-specific WQC for better ecosystem protection. We show that this machine learning-based approach, with consideration of physicochemical properties of metals, hydrochemical conditions, biological characteristics of fishes, and metal toxicities, as well as their relationships, can well predict the toxicity of 19 metals to various fish species. The method is applied to derive site-specific WQC (based on the hazardous concentration of 5%) of these metals for the Eastern Plain lake region in China. The study provides a novel, alternative approach to supplement the insufficient toxicity information for site-specific WQC derivation and potentially improve the protection of fish species.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
锦江完成签到,获得积分10
刚刚
哭泣青烟完成签到 ,获得积分10
1秒前
007完成签到,获得积分10
1秒前
lazyboy发布了新的文献求助10
2秒前
2秒前
王晨发布了新的文献求助10
3秒前
3秒前
4秒前
碧蓝亦玉完成签到,获得积分10
5秒前
爆米花应助清爽的诗云采纳,获得10
6秒前
Sea_U发布了新的文献求助10
7秒前
Gloria发布了新的文献求助10
7秒前
852应助Lz采纳,获得10
7秒前
8秒前
CipherSage应助科研通管家采纳,获得10
8秒前
酷波er应助科研通管家采纳,获得10
8秒前
9秒前
9秒前
田様应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
9秒前
9秒前
YH完成签到,获得积分10
9秒前
完美采梦发布了新的文献求助10
10秒前
13秒前
义气尔安完成签到,获得积分10
14秒前
15秒前
15秒前
16秒前
16秒前
lllth完成签到,获得积分10
17秒前
小七发布了新的文献求助10
18秒前
脑洞疼应助zuo采纳,获得10
18秒前
19秒前
sfsfes应助小耳朵采纳,获得10
19秒前
量子星尘发布了新的文献求助10
20秒前
21秒前
海绵宝宝发布了新的文献求助10
21秒前
22秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Diagnostic Imaging: Pediatric Neuroradiology 2000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 740
镇江南郊八公洞林区鸟类生态位研究 500
Corpus Linguistics for Language Learning Research 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4138872
求助须知:如何正确求助?哪些是违规求助? 3675739
关于积分的说明 11619131
捐赠科研通 3369918
什么是DOI,文献DOI怎么找? 1851171
邀请新用户注册赠送积分活动 914339
科研通“疑难数据库(出版商)”最低求助积分说明 829189