Non-physiological direction loading increases bone adaptive responses by enhancing lacunocanalicular fluid dynamics

动力学(音乐) 医学 物理 声学
作者
Yuan Wang,Ruisen Fu,Haisheng Yang
出处
期刊:Journal of Bone and Mineral Research [Wiley]
标识
DOI:10.1093/jbmr/zjaf117
摘要

Abstract It’s been proposed that bone adaptation is “error-driven”, namely, bone is more sensitive to non-physiological loading (e.g., loading in a non-physiological direction). However, the effect of physiological vs. non-physiological loading on bone adaptation and its underlying mechanism are not fully understood. We hypothesized that loading in a non-physiological direction would increase osteogenesis via enhancing fluid flow within the lacunocanalicular network (LCN), independent of the strain magnitude. To test this hypothesis, we first examined the effects of physiological and non-physiological direction loading on bone formation responses with axial and transversal in vivo loading models of the mouse tibia, respectively, under a strain-matched condition. Next, an in silico whole bone-LCN multiscale model was developed to compute loading-induced strains and fluid shear stresses within the LCN. Lastly, regression analyses were performed to examine the spatial correlations between bone mechanoresponses and fluid shear stress (and strain). Results showed that the transversal loading led to an increased cortical bone response compared to the axial loading even though the strains were matched. The transversal loading-induced increase in bone response was associated with enhanced lacunocanalicular fluid flow rather than strain. Additionally, strong correlations existed between bone mechanoresponses and fluid shear stress whereas no correlation was detected between bone responses and strain. These results support our hypothesis and may explain why bone adaptation is more sensitive to loading in a non-physiological direction. The findings also highlight the key role of the fluid dynamic microenvironment within LCN in regulating bone mechanoadaptation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
丘比特应助大婷子采纳,获得10
2秒前
lou完成签到,获得积分10
2秒前
酷波er应助陈皮软糖采纳,获得10
2秒前
李健的小迷弟应助xhz采纳,获得10
3秒前
研友_VZG7GZ应助天才包采纳,获得10
3秒前
cheezle完成签到,获得积分10
3秒前
3秒前
不冰淇淋完成签到,获得积分10
3秒前
不行就相比较完成签到,获得积分10
4秒前
palace完成签到,获得积分10
4秒前
4秒前
5秒前
上官若男应助大气的寇采纳,获得10
6秒前
Hello应助小小的手心采纳,获得10
6秒前
6秒前
smile完成签到,获得积分20
6秒前
ii完成签到,获得积分10
7秒前
7秒前
光亮的安双完成签到 ,获得积分10
8秒前
cheezle发布了新的文献求助10
8秒前
tang发布了新的文献求助10
8秒前
研知之发布了新的文献求助10
8秒前
英俊的铭应助妮娜采纳,获得10
9秒前
9秒前
小羊打嗝发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
11秒前
唐一峰发布了新的文献求助30
11秒前
Zx_1993应助合适的谷雪采纳,获得10
12秒前
搜集达人应助孤独小蜜蜂采纳,获得10
12秒前
12秒前
NexusExplorer应助雨田采纳,获得10
12秒前
黄婷萱发布了新的文献求助10
14秒前
16秒前
十夜完成签到,获得积分10
16秒前
奋斗的猪完成签到 ,获得积分10
16秒前
17秒前
17秒前
YQQ完成签到,获得积分10
19秒前
十夜发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5521185
求助须知:如何正确求助?哪些是违规求助? 4612661
关于积分的说明 14534683
捐赠科研通 4550154
什么是DOI,文献DOI怎么找? 2493511
邀请新用户注册赠送积分活动 1474660
关于科研通互助平台的介绍 1446156