Indirect Band Nature of Atomically Thin Hexagonal Boron Nitride Identified by Resonant Excitation in the Deep Ultraviolet Regime

六方氮化硼 材料科学 激发 紫外线 氮化硼 氮化物 六方晶系 光电子学 凝聚态物理 纳米技术 结晶学 物理 化学 图层(电子) 石墨烯 量子力学
作者
NULL AUTHOR_ID,Yuqing Hu,Ning Tang,Junxi Duan,Xionghui Jia,Huaiyuan Yang,Zhuoxian Li,Xiangyan Han,Guoping Li,Jianming Lü,Lun Dai,Weikun Ge,Yugui Yao,Bo Shen
出处
期刊:Physical Review Letters [American Physical Society]
卷期号:135 (4): 046903-046903
标识
DOI:10.1103/rt4w-v9r8
摘要

Atomically thin hexagonal boron nitride (h-BN), especially monolayer, has emerged as a pivotal quantum material due to its intriguing optical and light-matter-interaction properties. Nevertheless, fundamental ambiguities persist regarding its intrinsic band structure and deep-UV optical responses. Here, a multispectroscopic approach-combining near-resonance deep-UV photoluminescence, Raman spectroscopy, and reflectance contrast measurements-is employed to systematically resolve the layer-dependent optoelectronic evolution of h-BN. It is revealed that the absence of band-edge luminescence in 1-3 layers h-BN is indicative of their indirect band gap nature, thereby rectifying longstanding misinterpretations of monolayer BN as a direct band gap semiconductor. Strikingly, band-edge luminescence signals and indirect band gap absorption start to appear in 4-layer, and the luminescence intensity increases with the number of layers, suggesting that interlayer interactions and periodicity along the z axis enhance phonon-assisted indirect band gap transition, even in the 4-layer case, and furthermore indicating the formation process of flat bands at K/M valleys as the periodicity along z direction increases. Moreover, the prominent resonance Raman signals in atomically thin h-BN reveals exceptionally strong electron-phonon coupling, a critical parameter for quantum optoelectronic applications. Our findings provide definitive experimental benchmarks for the long-debated monolayer BN's band structure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
nitsuj发布了新的文献求助10
1秒前
与鱼予雨发布了新的文献求助10
2秒前
残雪孤烛灭关注了科研通微信公众号
3秒前
量子星尘发布了新的文献求助10
4秒前
停停停关注了科研通微信公众号
5秒前
5秒前
13679165979完成签到,获得积分10
6秒前
充电宝应助谦让的靖巧采纳,获得10
6秒前
疯子不风完成签到,获得积分10
7秒前
8秒前
9秒前
深情安青应助明芬采纳,获得10
10秒前
lingluo完成签到,获得积分10
11秒前
Redback应助科研圣体采纳,获得30
12秒前
13秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
HOAN应助小小旋风采纳,获得50
14秒前
qinqiny完成签到 ,获得积分0
15秒前
小二郎应助13679165979采纳,获得10
18秒前
科目三应助王王牛奶采纳,获得10
19秒前
ding应助干净山彤采纳,获得10
20秒前
思茶念酒完成签到 ,获得积分10
20秒前
填空完成签到 ,获得积分10
20秒前
寒冷代双发布了新的文献求助10
20秒前
22秒前
独白完成签到 ,获得积分10
22秒前
24秒前
Ting发布了新的文献求助10
25秒前
是晓宇啊完成签到,获得积分10
26秒前
王王牛奶完成签到,获得积分20
26秒前
与鱼予雨完成签到,获得积分10
26秒前
丘比特应助variant采纳,获得10
27秒前
星君发布了新的文献求助10
28秒前
科研通AI6应助八八采纳,获得10
28秒前
28秒前
小二郎应助ZCN采纳,获得10
30秒前
30秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675259
求助须知:如何正确求助?哪些是违规求助? 4944557
关于积分的说明 15152263
捐赠科研通 4834457
什么是DOI,文献DOI怎么找? 2589502
邀请新用户注册赠送积分活动 1543138
关于科研通互助平台的介绍 1501068