Exploring the Hepatotoxicity of Drugs through Machine Learning and Network Toxicological Methods

机制(生物学) 药品 机器学习 人工智能 计算机科学 集合(抽象数据类型) 药物开发 分子描述符 计算生物学 药理学 医学 数量结构-活动关系 生物 认识论 哲学 程序设计语言
作者
Tiantian Tang,Xiaofeng Gan,Li Zhou,Kexue Pu,Hong Wang,Weina Dai,Bo Zhou,Lingyun Mo,Yonghong Zhang
出处
期刊:Current Bioinformatics [Bentham Science Publishers]
卷期号:18 (6): 484-496 被引量:6
标识
DOI:10.2174/1574893618666230316122534
摘要

Background: The prediction of the drug-induced liver injury (DILI) of chemicals is still a key issue of the adverse drug reactions (ADRs) that needs to be solved urgently in drug development. The development of a novel method with good predictive capability and strong mechanism interpretation is still a focus topic in exploring the DILI. Objective: With the help of systems biology and network analysis techniques, a class of descriptors that can reflect the influence of drug targets in the pathogenesis of DILI is established. Then a machine learning model with good predictive capability and strong mechanism interpretation is developed between these descriptors and the toxicity of DILI. Methods: After overlapping the DILI disease module and the drug-target network, we developed novel descriptors according to the number of drug genes with different network overlapped distance parameters. The hepatotoxicity of drugs is predicted based on these novel descriptors and the classical molecular descriptors. Then the DILI mechanism interpretations of drugs are carried out with important network topological descriptors in the prediction model. Results: First, we collected targets of drugs and DILI-related genes and developed 5 NT parameters (S, Nds=0, Nds=1, Nds=2, and Nds>2) based on their relationship with a DILI disease module. Then hepatotoxicity predicting models were established between the above NT parameters combined with molecular descriptors and drugs through the machine learning algorithms. We found that the NT parameters had a significant contribution in the model (ACCtraining set=0.71, AUCtraining set=0.76; ACCexternal set=0.79, AUCexternal set=0.83) developed by these descriptors within the applicability domain, especially for Nds=2, and Nds>2. Then, the DILI mechanism of acetaminophen (APAP) and gefitinib are explored based on their risk genes related to ds=2. There are 26 DILI risk genes in the regulation of cell death regulated with two steps by 5 APAP targets, and gefitinib regulated risk gene of CLDN1, EIF2B4, and AMIGO1 with two steps led to DILI which fell in the biological process of response to oxygen-containing compound, indicating that different drugs possibly induced liver injury through regulating different biological functions. Conclusion: A novel method based on network strategies and machine learning algorithms successfully explored the DILI of drugs. The NT parameters had shown advantages in illustrating the DILI mechanism of chemicals according to the relationships between the drug targets and the DILI risk genes in the human interactome. It can provide a novel candidate of molecular descriptors for the predictions of other ADRs or even of the predictions of ADME/T activity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学阀小智发布了新的文献求助10
刚刚
涤尘完成签到,获得积分10
刚刚
熙熙发布了新的文献求助10
1秒前
YYMY2022发布了新的文献求助10
1秒前
风趣的可兰完成签到 ,获得积分10
1秒前
VISIN完成签到 ,获得积分10
1秒前
3秒前
Jimmy发布了新的文献求助10
3秒前
苹果映菱完成签到,获得积分20
3秒前
4秒前
嘻嘻嘻完成签到,获得积分10
4秒前
君君发布了新的文献求助10
5秒前
满意的盼柳完成签到,获得积分10
5秒前
WSY发布了新的文献求助10
5秒前
6秒前
6秒前
苏昊海发布了新的文献求助10
7秒前
传奇3应助超帅的店员采纳,获得10
8秒前
9秒前
Alicia发布了新的文献求助10
9秒前
SASA发布了新的文献求助10
10秒前
嘻嘻嘻发布了新的文献求助10
12秒前
12秒前
sskr完成签到,获得积分10
12秒前
丘比特应助现代雪柳采纳,获得10
13秒前
李爱国应助Duan采纳,获得10
13秒前
小梦完成签到,获得积分10
13秒前
14秒前
14秒前
日尧完成签到,获得积分10
16秒前
78910完成签到,获得积分10
17秒前
17秒前
科目三应助乐观的非笑采纳,获得10
18秒前
法侣完成签到,获得积分10
18秒前
情怀应助loong采纳,获得10
18秒前
18秒前
毛豆爸爸应助科研通管家采纳,获得20
18秒前
ding应助科研通管家采纳,获得10
18秒前
wyc发布了新的文献求助10
18秒前
李健应助科研通管家采纳,获得10
19秒前
高分求助中
Many-electron theory of superexchange 1000
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders (2025, 4th edition) 800
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Werkstoffe und Bauweisen in der Fahrzeugtechnik 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833048
求助须知:如何正确求助?哪些是违规求助? 3375470
关于积分的说明 10489248
捐赠科研通 3095117
什么是DOI,文献DOI怎么找? 1704226
邀请新用户注册赠送积分活动 819877
科研通“疑难数据库(出版商)”最低求助积分说明 771661