Parallel Global Best-Worst Particle Swarm Optimization Algorithm for solving optimization problems

加速 计算机科学 粒子群优化 多群优化 算法 群体智能 水准点(测量) 数学优化 帝国主义竞争算法 可扩展性 元优化 群体行为 并行算法 数学 并行计算 人工智能 数据库 大地测量学 地理
作者
Lalit Kumar,Manish Pandey,Mitul Kumar Ahirwal
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:142: 110329-110329 被引量:12
标识
DOI:10.1016/j.asoc.2023.110329
摘要

The range of applications of swarm optimization algorithms is very vast. However, high dimensions and more number of decision variables make these optimization problems more complex. Particle Swarm Optimization (PSO) is the most popular optimizer for performing such types of optimization. PSO is motivated from the movement and intelligence of swarms. However, the primary constraint with the PSO and other swarm algorithms is enormous computational time (CT) due to more number of decision variables in complex problem. The number of steps inside Swarm Intelligence Algorithms (SIAs) also increase the complexity of computation in the process of optimization. Many iterations of the procedure of SIA need more CT since these algorithms are iterative in nature. In this study, a new Global Best-Worst Particle Swarm Optimization (GBWPSO) algorithm has been proposed so as to provide a fully version of parallel algorithm. GBWPSO algorithm is the combination of PSO and Jaya algorithm that provides a refined version of parallel algorithm having more parallelism. The proposed algorithm is executed on three different computational hardware with various combinations of population size and maximum number of iteration on five different standard benchmark functions. The evaluation is done on the basis of performance metrics such as speedup (S), real speedup (RS), maximum speedup (MS), efficiency (E), and scalability. The proposed parallel algorithm (P-GBWPSO) outperforms both parallel version of PSO and Jaya algorithm in terms of less CT and better optimal solution. Based on the results, we found that system 03 (S3) is best on proposed GBWPSO algorithm with an efficiency of 1.2518 compare with system 01 (S1) and system 02 (S2).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高贵魂幽完成签到,获得积分10
1秒前
1秒前
ew完成签到,获得积分10
1秒前
1秒前
斯文败类应助晚安886采纳,获得30
2秒前
神凰完成签到,获得积分10
4秒前
小何同学发布了新的文献求助10
4秒前
彩云追月发布了新的文献求助10
6秒前
6秒前
6秒前
爆米花应助赵楠采纳,获得10
6秒前
6秒前
7秒前
科研通AI5应助陌雪采纳,获得10
7秒前
Yhcir完成签到,获得积分10
8秒前
ew发布了新的文献求助10
8秒前
糊辣鱼完成签到 ,获得积分10
8秒前
斯文败类应助wankai采纳,获得10
8秒前
情怀应助林夏采纳,获得10
8秒前
魔幻之云完成签到 ,获得积分10
9秒前
11发布了新的文献求助10
10秒前
aa发布了新的文献求助20
11秒前
豆包发布了新的文献求助10
11秒前
Pan发布了新的文献求助30
11秒前
MM完成签到,获得积分10
12秒前
难过的远航关注了科研通微信公众号
13秒前
斯文败类应助lcx采纳,获得10
13秒前
余味应助萨尔莫斯采纳,获得10
13秒前
14秒前
zhengzhao发布了新的文献求助10
15秒前
脑洞疼应助JHL采纳,获得10
15秒前
15秒前
天天快乐应助Yhcir采纳,获得10
16秒前
不吃香菜完成签到 ,获得积分10
17秒前
西西西完成签到,获得积分10
17秒前
18秒前
晚安886发布了新的文献求助30
19秒前
今后应助彩云追月采纳,获得10
19秒前
豆包完成签到,获得积分10
19秒前
20秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799888
求助须知:如何正确求助?哪些是违规求助? 3345183
关于积分的说明 10324169
捐赠科研通 3061781
什么是DOI,文献DOI怎么找? 1680528
邀请新用户注册赠送积分活动 807129
科研通“疑难数据库(出版商)”最低求助积分说明 763462