Detecting localised prostate cancer using radiomic features in PSMA PET and multiparametric MRI for biologically targeted radiation therapy

医学 前列腺癌 体素 多参数磁共振成像 核医学 磁共振成像 放射科 前列腺 癌症 内科学
作者
Tsz Him Chan,Annette Haworth,Alan Wang,Mahyar Osanlouy,Scott Williams,Catherine Mitchell,Michael S. Hofman,Rodney J. Hicks,Declan G. Murphy,Hayley M. Reynolds
出处
期刊:EJNMMI research [Springer Science+Business Media]
卷期号:13 (1) 被引量:16
标识
DOI:10.1186/s13550-023-00984-5
摘要

Prostate-Specific Membrane Antigen (PSMA) PET/CT and multiparametric MRI (mpMRI) are well-established modalities for identifying intra-prostatic lesions (IPLs) in localised prostate cancer. This study aimed to investigate the use of PSMA PET/CT and mpMRI for biologically targeted radiation therapy treatment planning by: (1) analysing the relationship between imaging parameters at a voxel-wise level and (2) assessing the performance of radiomic-based machine learning models to predict tumour location and grade.PSMA PET/CT and mpMRI data from 19 prostate cancer patients were co-registered with whole-mount histopathology using an established registration framework. Apparent Diffusion Coefficient (ADC) maps were computed from DWI and semi-quantitative and quantitative parameters from DCE MRI. Voxel-wise correlation analysis was conducted between mpMRI parameters and PET Standardised Uptake Value (SUV) for all tumour voxels. Classification models were built using radiomic and clinical features to predict IPLs at a voxel level and then classified further into high-grade or low-grade voxels.Perfusion parameters from DCE MRI were more highly correlated with PET SUV than ADC or T2w. IPLs were best detected with a Random Forest Classifier using radiomic features from PET and mpMRI rather than either modality alone (sensitivity, specificity and area under the curve of 0.842, 0.804 and 0.890, respectively). The tumour grading model had an overall accuracy ranging from 0.671 to 0.992.Machine learning classifiers using radiomic features from PSMA PET and mpMRI show promise for predicting IPLs and differentiating between high-grade and low-grade disease, which could be used to inform biologically targeted radiation therapy planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷炫的之柔完成签到,获得积分10
2秒前
kabane完成签到,获得积分10
2秒前
2秒前
闪闪海白发布了新的文献求助10
2秒前
4秒前
Cold-Drink-Shop完成签到,获得积分10
4秒前
6秒前
jason完成签到,获得积分10
6秒前
虚幻初晴发布了新的文献求助30
6秒前
舒服的忆南完成签到,获得积分10
8秒前
jason发布了新的文献求助10
9秒前
9秒前
王博士完成签到,获得积分10
9秒前
10秒前
陆晓亦完成签到,获得积分10
12秒前
Akim应助carly采纳,获得20
12秒前
笑一笑完成签到,获得积分10
12秒前
Owen应助赞zan采纳,获得30
13秒前
13秒前
Yz发布了新的文献求助10
14秒前
15秒前
车厘子发布了新的文献求助10
17秒前
17秒前
17秒前
neverever完成签到,获得积分10
18秒前
研友_VZG7GZ应助sjx_13351766056采纳,获得10
19秒前
21秒前
22秒前
zzz发布了新的文献求助10
23秒前
tracey完成签到 ,获得积分10
23秒前
清醒完成签到,获得积分10
24秒前
茂飞发布了新的文献求助10
24秒前
乌冬面完成签到,获得积分10
25秒前
26秒前
stephanie21发布了新的文献求助40
26秒前
27秒前
bridge完成签到,获得积分10
28秒前
29秒前
科目三应助野椒搞科研采纳,获得10
30秒前
31秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965174
求助须知:如何正确求助?哪些是违规求助? 3510528
关于积分的说明 11153741
捐赠科研通 3244822
什么是DOI,文献DOI怎么找? 1792646
邀请新用户注册赠送积分活动 873928
科研通“疑难数据库(出版商)”最低求助积分说明 804081